EFRI BioFlex: Flexible Resorbable Organic and Nanomaterial Therapeutic Systems (FRONTS)

EFRI BioFlex:灵活的可吸收有机和纳米材料治疗系统 (FRONTS)

基本信息

  • 批准号:
    1240380
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2017-04-30
  • 项目状态:
    已结题

项目摘要

The investigators propose to design, develop and characterize novel flexible, resorbable nanomaterials and devices for wound healing applications. The work is divided into three tasks to support the engineering of a resorbable system for wounding healing: a) the development of flexible, resorbable materials themselves containing resorbable, high-quality conductors (for use as interconnects and electrodes); b) the development of resorbable, biocompatible batteries; c) the use of implanted flexible -- ultimately resorbable? devices to map and control the electric field wound gradient in internal wounds. Additionally, the work leverages efforts at UCSF on internal wound healing in the context of anastomoses and the extensive experience of the Pediatric Device Consortium (www.pediatricdeviceconsortium.org/).Intellectual Merit: When implanting therapeutic electronic constructs within the body, a key concern is their removal after the therapeutic effect is complete. This need to remove such constructs has largely limited the deployment of electronic therapeutic systems to applications where they may be easily removed. Specifically, it is typically unacceptable to leave such a device within the body, since gradual degradation of the device could introduce toxic materials in large quantities and sizes into the body. The proposed effort lies at the intersection of nanomaterials, flexible electronics, and medical electronics. The effort brings together leading researchers in these fields. By leveraging the world-leading expertise of the individual researchers in each of these fields, the effort aims to achieve several dramatic innovations in medical electronics, including novel approaches to resorbable conductors and implantable, resorbable power sources. If successful, these efforts will create a body of knowledge and technology to enable the realization of sophisticated in-body therapeutic systems that leverage electrical stimulation to improve healing. This systems approach at translating cutting edge flexible and resorbable electronics directly to the clinic has the potential to transform soft-tissue wound healing therapies. While there are efforts aimed at electronic systems on skin, these efforts are limited by the absence of materials and process development specifically for medical applications, and generally do not aim to develop therapeutic applications; at best therefore, they are diagnostically focused. Similarly, there are numerous efforts focused on flexible electronics, but only relatively simple in-body systems have been demonstrated. This research will provide high resolution, in-body mapping of the wound gradient field in a minimally invasive way and will impact the knowledge and success of cell recovery in many medical procedures. Likewise, the impact of a demonstration of successful stimulation to affect internal wound healing in a controlled or predictable manner would be very high. Broader Impact:The effort will introduce a multi-facetted education and outreach program, targeted at increasing recruitment and retention of high-school students into science and engineering, and extending opportunities to underrepresented minorities at all levels of education from school to university. Opportunities for high school students, undergraduates, and graduate students, as well as underrepresented minorities at all levels will be provided, and will be matched to research within the effort. In addition to research opportunities, seminars and tutorials will be organized to develop interest in flexible electronics for medical applications. Undergraduate and graduate students will be involved in performing this work. Undergraduates will be engaged in experimental design and metrology tutorials to prepare them for future careers in research. The results of this proposal will also be used in a University-sponsored high-school outreach program. High-school students will be invited to visit the laboratory and to gain hands-on experience. Finally, specific programs targeting recruitment of minority students will be developed as part of this project, with the goal of providing opportunities, training, and mentorship at all levels for minority students to drive their retention and success in STEM field.
研究人员建议设计、开发和表征用于伤口愈合应用的新型柔性、可吸收纳米材料和设备。这项工作分为三个任务,以支持可吸收系统的工程,用于伤口愈合:a)开发柔性,可吸收的材料本身包含可吸收的高质量导体(用作互连和电极);B)可吸收的、生物相容的电池的发展;C)使用植入的柔性——最终可吸收的?绘制和控制内部伤口电场梯度的装置。此外,这项工作利用了UCSF在吻合口的内部伤口愈合方面的努力和儿科设备协会(www.pediatricdeviceconsortium.org/).Intellectual)的丰富经验。优点:在体内植入治疗性电子结构时,一个关键的问题是在治疗效果完成后将其移除。这种移除这些结构的需要在很大程度上限制了电子治疗系统的部署,使其可以很容易地移除。具体来说,将这样的设备留在体内通常是不可接受的,因为设备的逐渐降解可能会将大量和大小的有毒物质引入体内。这项提议的努力是纳米材料、柔性电子和医疗电子的交叉。这项工作汇集了这些领域的主要研究人员。通过利用这些领域中世界领先的个人研究人员的专业知识,该努力旨在实现医疗电子领域的几项重大创新,包括可吸收导体和可植入可吸收电源的新方法。如果成功,这些努力将创造一个知识和技术体系,使利用电刺激改善愈合的复杂体内治疗系统成为可能。这种将尖端的柔性和可吸收电子设备直接应用于临床的系统方法有可能改变软组织伤口愈合疗法。虽然有针对皮肤电子系统的努力,但由于缺乏专门用于医疗应用的材料和工艺开发,这些努力受到限制,并且通常不旨在开发治疗应用;因此,他们最多只能诊断出重点。类似地,有许多努力集中在柔性电子设备上,但只有相对简单的体内系统得到了证明。这项研究将以微创的方式提供高分辨率的伤口梯度场的体内测绘,并将影响许多医疗程序中细胞恢复的知识和成功。同样,成功的刺激以可控或可预测的方式影响内部伤口愈合的演示将是非常高的。更广泛的影响:这项努力将引入一项多方面的教育和推广计划,旨在增加高中学生在科学和工程领域的招生和留用,并在从中学到大学的各级教育中为代表性不足的少数民族提供更多机会。将为高中学生、本科生、研究生以及各级未被充分代表的少数民族提供机会,并将与努力中的研究相匹配。除了研究机会外,还将组织研讨会和教程,以培养对医疗应用的柔性电子产品的兴趣。本科生和研究生将参与执行这项工作。本科生将参与实验设计和计量教程,为他们未来的研究事业做准备。该提案的结果也将用于大学赞助的高中外展计划。高中学生将被邀请参观实验室并获得实践经验。最后,作为该项目的一部分,将制定针对少数民族学生招聘的具体计划,目标是为少数民族学生提供各级机会、培训和指导,以推动他们在STEM领域的保留和成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michel Maharbiz其他文献

Michel Maharbiz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michel Maharbiz', 18)}}的其他基金

UNS:Parylene-in-Parylene (PiP) integrated photonic systems for optogenetics in microelectrocorticography (uECoG)
UNS:用于微皮层电图学 (uECoG) 中光遗传学的聚对二甲苯 (PiP) 集成光子系统
  • 批准号:
    1512794
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EAGER: Neural dust stimulation for closed loop neuromodulation
EAGER:用于闭环神经调节的神经粉尘刺激
  • 批准号:
    1551239
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Integrated Microsystems for Synthetic Biology
职业:合成生物学集成微系统
  • 批准号:
    0846618
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-BioFlex: A Flexible Glucose Fuel Cell
EFRI-BioFlex:灵活的葡萄糖燃料电池
  • 批准号:
    1606406
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BioFlex: Electrically Mediated Complex Tissue Regeneration
EFRI BioFlex:电介导的复杂组织再生
  • 批准号:
    1332329
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Hybrid polymer-paper based multi-sensor implants for continuous remote monitoring
EFRI-BioFlex:基于混合聚合物纸的多传感器植入物,用于连续远程监控
  • 批准号:
    1332394
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: A Flexible Glucose Fuel Cell
EFRI-BioFlex:灵活的葡萄糖燃料电池
  • 批准号:
    1332250
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Miniature, low-cost fiber-optics technology for measurement of tissue structure at sub-diffractional length scales: a platform for cancer screening
EFRI-BioFlex:用于在亚衍射长度尺度上测量组织结构的微型、低成本光纤技术:癌症筛查平台
  • 批准号:
    1240416
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Rapid Identification of Blood, Urine, and Saliva Toxins and Bacterial Infections with a SERS/LSS Flexible System
EFRI-BioFlex:使用 SERS/LSS 灵活系统快速识别血液、尿液和唾液毒素以及细菌感染
  • 批准号:
    1240410
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFLEX: Tissue Engineered Flexible Sensors, Actuators and Electronics for Chronic Wound Management
EFRI-BioFLEX:用于慢性伤口管理的组织工程柔性传感器、执行器和电子设备
  • 批准号:
    1240443
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了