EAGER:Topological Machine Learning

EAGER:拓扑机器学习

基本信息

  • 批准号:
    1551489
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Deep learning, first proposed in 1989, still represents the most effective means for extracting specific information from large datasets. This approach exploits many nonlinear processing layers to develop representations of data at increasing levels of abstraction. Deep learning has demonstrated best-in-class performance in a range of applications, including image and speech recognition, and demonstrated promising results for tasks based on natural language understanding and translation. Crudely speaking, deep learning acquires ¡®knowledge¡¯ by tuning large numbers (¡Ý200) of fitting parameters during a supervised learning phase. These parameters are then used to extract information from previously ¡®unseen¡¯ data. Ultimately, deep learning is premised on using a large number of tuning parameters to develop nonlinear feature detectors capable of efficiently representing the intrinsic structure of the data at an abstract level.¡±This project will examine two potentially powerful, but highly speculative alternative approaches to extract information from data. These approaches exploit the intrinsic properties of the data rather than an extensive set of tuning parameters. Both approaches are based on conjectures made by the PIs regarding possible extensions of techniques successfully applied in very different branches of mathematics. The first concerns the extraction of specific structural information from random sightings of objects; the second, forecasting the behavior of dynamical systems [6]. The ultimate goal of this project is to determine whether the aforementioned algebraic topological approaches or techniques developed for the forecasting of high-dimensional time-series or some variations thereof, can be exploited to create a new class of non-iterative unsupervised learning algorithms. The broader impact of the project is the training of young scientists at the hitherto unexplored intersection of abstract mathematics and machine learning, with possible applications in science,technology, and commerce.
1989年首次提出的深度学习仍然是从大型数据集中提取特定信息的最有效方法。这种方法利用许多非线性处理层来开发抽象级别不断增加的数据表示。深度学习在包括图像和语音识别在内的一系列应用中表现出了一流的性能,并在基于自然语言理解和翻译的任务中表现出了有希望的结果。粗略地说,深度学习通过在监督学习阶段调整大量(约200个)拟合参数来获取“知识”。然后,这些参数用于从以前“看不见”的数据中提取信息。最终,深度学习将使用大量的调整参数来开发非线性特征检测器,这些检测器能够在抽象层面上有效地表示数据的内在结构。该项目将研究两种潜在的强大但高度投机的替代方法来从数据中提取信息。这些方法利用数据的内在属性,而不是一组广泛的调优参数。这两种方法都是基于由PI关于成功应用于非常不同的数学分支的技术的可能扩展所做的说明。第一个是从随机观测到的物体中提取特定的结构信息;第二个是预测动力系统的行为[6]。本项目的最终目标是确定是否上述代数拓扑方法或技术开发的高维时间序列或其某些变化的预测,可以利用创建一类新的非迭代无监督学习算法。该项目更广泛的影响是在迄今为止尚未探索的抽象数学和机器学习的交叉点培训年轻科学家,并可能在科学,技术和商业中应用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Abbas Ourmazd其他文献

Correction to: Spatiotemporal Pattern Extraction by Spectral Analysis of Vector-Valued Observables
  • DOI:
    10.1007/s00332-019-09586-9
  • 发表时间:
    2019-10-22
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Dimitrios Giannakis;Abbas Ourmazd;Joanna Slawinska;Zhizhen Zhao
  • 通讯作者:
    Zhizhen Zhao
The case for data science in experimental chemistry: examples and recommendations
实验化学中数据科学的案例:示例与建议
  • DOI:
    10.1038/s41570-022-00382-w
  • 发表时间:
    2022-04-21
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Junko Yano;Kelly J. Gaffney;John Gregoire;Linda Hung;Abbas Ourmazd;Joshua Schrier;James A. Sethian;Francesca M. Toma
  • 通讯作者:
    Francesca M. Toma
The strain of it all
这一切的压力
  • DOI:
    10.1038/nnano.2008.195
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Abbas Ourmazd
  • 通讯作者:
    Abbas Ourmazd
Authentic Enzyme Intermediates Captured “on-the-fly” by Mix-and-Inject Serial Crystallography
通过混合和注射连续晶体学“即时”捕获真实的酶中间体
  • DOI:
    10.1101/202432
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jose Olmos;S. Pandey;J. Martin;George D. Calvey;Andrea Katz;Juray Knoska;Christopher Kupitz;Mark Hunter;M. Liang;D. Oberthuer;O. Yefanov;M. Wiedorn;Michael Heyman;Mark Holl;Kanupriya Pande;A. Barty;Mitchell D. Miller;S. Stern;Shatabdi Roy;J. Coe;Nirupa Nagaratnam;James D. Zook;Jacob Verburgt;Tyler Norwood;I. Poudyal;David Xu;J. Koglin;Matt Seaberg;Yun Zhao;S. Bajt;Thomas D. Grant;V. Mariani;G. Nelson;Ganesh Subramanian;Euiyoung Bae;R. Fromme;R. Fung;P. Schwander;Matthias Frank;Thomas A. White;U. Weierstall;N. Zatsepin;John C. H. Spence;Petra Fromme;H. Chapman;Lois Pollack;Lee Tremblay;Abbas Ourmazd;George N Phillips;Marius Schmidt
  • 通讯作者:
    Marius Schmidt
Ion-Assisted Processing of Electronic Materials
  • DOI:
    10.1557/s0883769400041415
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Walter L. Brown;Abbas Ourmazd
  • 通讯作者:
    Abbas Ourmazd

Abbas Ourmazd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Abbas Ourmazd', 18)}}的其他基金

EAGER: Functionally Relevant Structural Heterogeneity in Coronavirus SARS-CoV2 Proteins
EAGER:冠状病毒 SARS-CoV2 蛋白的功能相关结构异质性
  • 批准号:
    2029533
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234921
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234920
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
  • 批准号:
    2234919
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Symmetry-Guided Machine Learning for the Discovery of Topological Phononic Materials
合作研究:DMREF:用于发现拓扑声子材料的对称引导机器学习
  • 批准号:
    2118523
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Machine learning accelerated topological design of metal-organic frameworks
机器学习加速金属有机框架的拓扑设计
  • 批准号:
    2602201
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Studentship
Collaborative Research: DMREF: Symmetry-Guided Machine Learning for the Discovery of Topological Phononic Materials
合作研究:DMREF:用于发现拓扑声子材料的对称引导机器学习
  • 批准号:
    2118448
  • 财政年份:
    2021
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Machine Learning for Quantum Many Body Systems and Topological States
量子多体系统和拓扑状态的机器学习
  • 批准号:
    553852-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    1943758
  • 财政年份:
    2020
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant
CBMS Conference: Topological Methods in Machine Learning and Artificial Intelligence
CBMS 会议:机器学习和人工智能中的拓扑方法
  • 批准号:
    1836362
  • 财政年份:
    2018
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了