Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning
合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器
基本信息
- 批准号:2234921
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-rate systems are defined as dynamic systems experiencing high-rate and high-amplitude events. Examples include hypersonic vehicles and active impact mitigation strategies. The advanced operation of these mechanisms can only be achieved through control and feedback systems capable of operating in the sub-millisecond range, thus necessitating tight performance constraints. Additionally, high-rate systems are highly nonlinear and nonstationary, for which traditional real-time inference methods are incapable of providing credible predictions. Topological data analysis is gaining popularity for classifying complex time series. Its integration with architected machine learning algorithms shows promise in advancing the predictive capabilities for high-rate systems. However, topological data analysis is computationally expensive and cannot be applied in the sub-millisecond range. This project will investigate real-time topological data analysis capabilities by developing and integrating advances in mathematical, software, and hardware foundations. Successful completion of this project will yield theoretical foundations enabling the integration of topological data analysis with machine learning for modeling and forecasting time series, constituting a major leap from the pure algebraic topological approach. It is envisioned that the developed foundations, along with software and hardware artifacts, will find applications in supercomputing, high-speed data storage, connected vehicles, financial fraud mitigation, cyber-security, deep-fake detection, active blast shielding, and hypersonic vehicles. This project will broaden participation in computing by training multiple undergraduate and graduate students through a well-structured research and education plan that leverages existing programs and partnerships at the three partnering universities, including an undergraduate historically black college.This project will demonstrate that complex nonstationary systems can be learned in real-time by integrating modern mathematical tools combined with advances in hardware, notably by generating a field-programmable gate array design for a real-time predictor running on the edge. To that end, customized variations of traditional topological data analysis will be developed to meet the needs of the targeted modeling and forecasting tasks while producing computationally efficient machine learning representations. Concurrently, opportunities and limitations in conducting topological data analysis in real-time and in producing a modular automated programmer for heterogeneous hardware will be identified. Then, software and hardware discoveries will be integrated to demonstrate real-time topological data analysis and to conduct time series modeling and forecasting. Undergraduate students involved in these research projects will be provided with long-term mentored research and learning experiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高速率系统被定义为经历高速率和高幅度事件的动态系统。例子包括高超声速飞行器和主动撞击缓解战略。这些机构的先进运行只能通过能够在亚毫秒范围内运行的控制和反馈系统来实现,因此需要严格的性能限制。此外,高速系统是高度非线性和非平稳的,传统的实时推理方法无法提供可靠的预测。拓扑数据分析在对复杂时间序列进行分类方面越来越受到人们的欢迎。它与构建的机器学习算法的集成显示出在提高高速率系统的预测能力方面的前景。然而,拓扑数据分析的计算成本很高,并且不能在亚毫秒范围内应用。该项目将通过发展和整合数学、软件和硬件基础方面的进步来研究实时拓扑数据分析能力。该项目的成功完成将为将拓扑数据分析与机器学习相结合以对时间序列进行建模和预测奠定理论基础,构成从纯代数拓扑法的重大飞跃。据设想,开发的基础以及软件和硬件制品将在超级计算、高速数据存储、联网车辆、金融欺诈缓解、网络安全、深度假冒检测、主动爆炸屏蔽和高超声速飞行器中得到应用。这个项目将通过一个结构良好的研究和教育计划来培训多名本科生和研究生,从而扩大对计算的参与。该计划利用三所合作大学的现有计划和合作伙伴关系,包括一所历史上一直是黑人的本科生大学。该项目将证明,通过将现代数学工具与硬件的进步相结合,可以实时学习复杂的非平稳系统,特别是通过为在边缘运行的实时预测器生成现场可编程门阵列设计。为此,将开发传统拓扑数据分析的定制变体,以满足目标建模和预测任务的需要,同时产生计算效率高的机器学习表示法。同时,将确定在进行实时拓扑数据分析和为不同硬件生产模块化自动化编程器方面的机会和限制。然后,将整合软件和硬件发现,以演示实时拓扑数据分析并进行时间序列建模和预测。参与这些研究项目的本科生将被提供长期的指导研究和学习经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Austin Downey其他文献
Subsecond Model Updating for High-Rate Structural Health Monitoring
用于高速结构健康监测的亚秒级模型更新
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
M. Carroll;Austin Downey;J. Dodson;Jonathan Hong;James Scheppegrell - 通讯作者:
James Scheppegrell
Fusion of sensor geometry into additive strain fields measured with sensing skin
将传感器几何形状融合到使用传感皮肤测量的附加应变场中
- DOI:
10.1088/1361-665x/aac4cd - 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Austin Downey;Mohammadkazem Sadoughi;S. Laflamme;Chao Hu - 通讯作者:
Chao Hu
Generated datasets from dynamic reproduction of projectiles in ballistic environments for advanced research (DROPBEAR) testbed
从弹道环境中弹丸的动态再现生成的数据集,用于高级研究 (DROPBEAR) 测试台
- DOI:
10.1088/2633-1357/aca0d2 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Nelson;S. Laflamme;Chao Hu;A. Moura;Jonathan Hong;Austin Downey;P. Lander;Yang Wang;Erik Blasch;J. Dodson - 通讯作者:
J. Dodson
Real-time splatter tracking in laser powder bed fusion additive manufacturing
激光粉末床熔融增材制造中的实时飞溅跟踪
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yanzhou Fu;Braden Priddy;Austin Downey;L. Yuan - 通讯作者:
L. Yuan
Measurement of Magnetic Particle Concentrations in Wildfire Ash via Compact NMR
通过紧凑型 NMR 测量野火灰烬中的磁性粒子浓度
- DOI:
10.1109/sensors52175.2022.9967041 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jacob Martin;Austin Downey;Mohammed Baalousha;S. Won - 通讯作者:
S. Won
Austin Downey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Austin Downey', 18)}}的其他基金
CAREER: Data-Driven Control of High-Rate Dynamic Systems
职业:高速动态系统的数据驱动控制
- 批准号:
2237696 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CRII: Algorithms and Methodologies for Real-Time Decision-Making of Mission-Critical Structures Experiencing High-Rate Dynamics
CRII:经历高速动态的任务关键结构实时决策的算法和方法
- 批准号:
1850012 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RTML: Small: Collaborative: A Programming Model and Platform Architecture for Real-time Machine Learning for Sub-second Systems
RTML:小型:协作:亚秒级系统实时机器学习的编程模型和平台架构
- 批准号:
1937535 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
水凝胶改性陶瓷人工关节牢固结合界面的构筑与减磨润滑机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
锆酸铅基反铁电体畴动力学及其调控机理研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
载铁生物炭对土壤镉污染的吸附固定及微生物协同作用机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SREBP转录因子BbSre1负调控球孢白僵菌抗真菌物质产生的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向截肢患者运动感知重建的肌电假肢手关节运动反馈时变编码研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向水质应急快检的碳点/微流控限域增强发光传感研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向挠性压电太阳翼的物理信息混合建模与非同位控制方法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
随机3维 Burgers 方程正则性研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
犬尿氨酸通过AhR/STAT3轴活化粒细胞样MDSCs促进慢性肾脏病心脏纤维化的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁性的机器学习研究: 以图神经网络为中心
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant