Collaborative Research: SHF: Small: Sub-millisecond Topological Feature Extractor for High-Rate Machine Learning

合作研究:SHF:小型:用于高速机器学习的亚毫秒拓扑特征提取器

基本信息

  • 批准号:
    2234919
  • 负责人:
  • 金额:
    $ 21.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

High-rate systems are defined as dynamic systems experiencing high-rate and high-amplitude events. Examples include hypersonic vehicles and active impact mitigation strategies. The advanced operation of these mechanisms can only be achieved through control and feedback systems capable of operating in the sub-millisecond range, thus necessitating tight performance constraints. Additionally, high-rate systems are highly nonlinear and nonstationary, for which traditional real-time inference methods are incapable of providing credible predictions. Topological data analysis is gaining popularity for classifying complex time series. Its integration with architected machine learning algorithms shows promise in advancing the predictive capabilities for high-rate systems. However, topological data analysis is computationally expensive and cannot be applied in the sub-millisecond range. This project will investigate real-time topological data analysis capabilities by developing and integrating advances in mathematical, software, and hardware foundations. Successful completion of this project will yield theoretical foundations enabling the integration of topological data analysis with machine learning for modeling and forecasting time series, constituting a major leap from the pure algebraic topological approach. It is envisioned that the developed foundations, along with software and hardware artifacts, will find applications in supercomputing, high-speed data storage, connected vehicles, financial fraud mitigation, cyber-security, deep-fake detection, active blast shielding, and hypersonic vehicles. This project will broaden participation in computing by training multiple undergraduate and graduate students through a well-structured research and education plan that leverages existing programs and partnerships at the three partnering universities, including an undergraduate historically black college.This project will demonstrate that complex nonstationary systems can be learned in real-time by integrating modern mathematical tools combined with advances in hardware, notably by generating a field-programmable gate array design for a real-time predictor running on the edge. To that end, customized variations of traditional topological data analysis will be developed to meet the needs of the targeted modeling and forecasting tasks while producing computationally efficient machine learning representations. Concurrently, opportunities and limitations in conducting topological data analysis in real-time and in producing a modular automated programmer for heterogeneous hardware will be identified. Then, software and hardware discoveries will be integrated to demonstrate real-time topological data analysis and to conduct time series modeling and forecasting. Undergraduate students involved in these research projects will be provided with long-term mentored research and learning experiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高速率系统是指经历高速率和高振幅事件的动态系统。这方面的例子包括高超音速飞行器和主动撞击减缓战略。这些机制的高级操作只能通过能够在亚毫秒范围内操作的控制和反馈系统来实现,因此需要严格的性能约束。此外,高速系统是高度非线性和非平稳的,传统的实时推理方法无法提供可靠的预测。拓扑数据分析在复杂时间序列的分类中越来越受欢迎。它与架构化机器学习算法的集成显示了推进高速率系统预测能力的前景。然而,拓扑数据分析是计算昂贵的,不能应用在亚毫秒范围。该项目将通过开发和整合数学,软件和硬件基础的进步来研究实时拓扑数据分析能力。该项目的成功完成将产生理论基础,使拓扑数据分析与机器学习相结合,用于建模和预测时间序列,构成了纯代数拓扑方法的重大飞跃。据设想,开发的基础,沿着软件和硬件工件,将在超级计算,高速数据存储,联网车辆,金融欺诈缓解,网络安全,深度伪造检测,主动爆炸屏蔽和高超音速飞行器中找到应用。该项目将通过一个结构良好的研究和教育计划,利用三所合作大学(包括一所历史悠久的黑人大学)的现有项目和合作关系,培训多名本科生和研究生,从而扩大对计算的参与。该项目将证明,通过将现代数学工具与硬件的进步相结合,特别是通过生成用于在边缘上运行的实时预测器的现场可编程门阵列设计。为此,将开发传统拓扑数据分析的定制变体,以满足目标建模和预测任务的需求,同时生成计算效率高的机器学习表示。同时,将确定实时进行拓扑数据分析和为异构硬件生产模块化自动编程器的机会和限制。然后,软件和硬件的发现将被整合,以展示实时拓扑数据分析,并进行时间序列建模和预测。参与这些研究项目的本科生将获得长期的指导研究和学习经验。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Laflamme其他文献

Enhancing 3D-printed cementitious composites with recycled carbon fibers from wind turbine blades
用来自风力涡轮机叶片的回收碳纤维增强 3D 打印胶凝复合材料
  • DOI:
    10.1016/j.conbuildmat.2025.140650
  • 发表时间:
    2025-04-18
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Han Liu;Simon Laflamme;Amelia Cardinali;Ping Lyu;Iris V. Rivero;Shelby E. Doyle;Kejin Wang
  • 通讯作者:
    Kejin Wang
Populism and Non-Populism: A Comparative Study of Political Platforms
民粹主义与非民粹主义:政治纲领的比较研究
Design and Standardization of a Speech and Language Screening Tool for Use among School-Aged Bilingual Children in a Minority Language Setting
供少数民族语言环境中学龄双语儿童使用的言语和语言筛查工具的设计和标准化
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michèle Minor;Chantal Mayer;Roxanne Bélanger;M. Robillard;Simon Laflamme;A. Reguigui
  • 通讯作者:
    A. Reguigui
Perspective on structural health monitoring of bridge scour
桥梁冲刷结构健康监测展望
Development and validation of a nonlinear dynamic model for tuned liquid multiple columns dampers
  • DOI:
    10.1016/j.jsv.2020.115624
  • 发表时间:
    2020-11-24
  • 期刊:
  • 影响因子:
  • 作者:
    Liang Cao;Yongqiang Gong;Filippo Ubertini;Hao Wu;An Chen;Simon Laflamme
  • 通讯作者:
    Simon Laflamme

Simon Laflamme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Laflamme', 18)}}的其他基金

RTML: Small: Collaborative: A Programming Model and Platform Architecture for Real-time Machine Learning for Sub-second Systems
RTML:小型:协作:亚秒级系统实时机器学习的编程模型和平台架构
  • 批准号:
    1937460
  • 财政年份:
    2019
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
PFI-TT: Physics-based Deep Transfer Learning for Predictive Maintenance of Industrial and Agricultural Machinery
PFI-TT:基于物理的深度迁移学习,用于工业和农业机械的预测性维护
  • 批准号:
    1919265
  • 财政年份:
    2019
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Multifunctional Structural Panel for Energy Efficiency and Multi-Hazards Mitigation
合作研究:用于提高能源效率和减轻多种危害的多功能结构面板
  • 批准号:
    1562992
  • 财政年份:
    2016
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Development of High Performance Control Systems for Wind Response Mitigation
开发用于减轻风响应的高性能控制系统
  • 批准号:
    1537626
  • 财政年份:
    2015
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Semi-Active Controlled Cladding Panels for Multi-Hazard Resilient Buildings
合作研究:用于多灾害防御建筑的半主动控制覆层板
  • 批准号:
    1463252
  • 财政年份:
    2015
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Developing the Next Generation of Cost-Effective High Performance Damping Systems for Seismic and Wind Hazards Mitigation
开发下一代经济高效的高性能阻尼系统以减轻地震和风灾
  • 批准号:
    1300960
  • 财政年份:
    2013
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 21.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了