Advancing a Situated Neuroscience of Emotion
推进情感的情境神经科学
基本信息
- 批准号:1551688
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
How can we know how other people are really feeling? If emotions are intensely experienced it may be easy to tell, but some people are good at hiding their emotions, or they may be unaware of or unable to report what they are feeling. Fortunately, technological advances in measuring brain activity and emotion theory can help us to have a more objective understanding of people's emotional states. Some theories of emotion suggest that different emotional states, such as fear, anger, or happiness, arise because of specific, dedicated neural circuitry that responds in the same way any time that emotion is experienced. For example, the circuitry for happiness is the same whether it arises because you get a compliment or you learned of a promotion. In contrast, the proposed research is built on an innovative 'situated neuroscience' model of emotions. This model hypothesizes that emotions correspond to variable neural patterns. These variable patterns are hypothesized to be determined by the emotion category experienced, such as fear, and partly by the context in which the emotion is experienced. The context includes components from culture and the situation itself. Dr. Kristen Lindquist, at the University of North Carolina at Chapel Hill, and colleagues proposed three experiments to examine this model. Her research will use measures of the location of brain events (functional magnetic resonance imaging; fMRI) and the timing of brain events (electroencephalography; EEG). The integration of emotion theory and technology in this way could help to improve communication about and understanding of emotions, help us to predict when emotions influence our decisions and performance, and may have benefits for the way we interact with others. The proposed research integrates emotion theory with technological advances in measuring brain activity to "read" emotional feelings from brain states. The aim is to develop a situated neuroscience of emotion that will inform our understanding of the basis of emotions and their conscious experience. Three experiments are proposed that examine the role of situational and cultural contexts in emotion and brain activity. The first experiment examines fear and anger and their interaction with situational and cultural contexts on brain activity, using functional magnetic resonance (fMRI). The situation is manipulated to be either social or non-social, and culture stems from enrolling natives of the US and China who know the emotion-based norms and values of their respective culture. The second experiment extends this investigation to the temporal dynamics of emotional brain activity using electroencephalography (EEG). The third study uses machine learning on data obtained from the prior experiments to determine which variables best predict brain activity during emotion, in the different contexts. Understanding the situated nature of emotion is crucial to an understanding of how neural circuits map on to subjective mental states. These findings may improve our understanding of emotional experience in ourselves and others, and enhance our communication, well-being, and diplomatic relations. It may also inform applied advancements in the areas of mood-related illnesses and brain-computer interface.
我们怎么知道别人的真实感受?如果情绪是强烈体验的,可能很容易分辨,但有些人善于隐藏自己的情绪,或者他们可能不知道或无法报告他们的感受。幸运的是,测量大脑活动和情绪理论的技术进步可以帮助我们更客观地了解人们的情绪状态。一些情绪理论认为,不同的情绪状态,如恐惧、愤怒或快乐,是因为特定的、专门的神经回路在任何时候都以同样的方式做出反应。例如,无论你是因为得到了赞美还是因为得到了晋升,快乐的回路都是一样的。相比之下,拟议中的研究是建立在一个创新的“情境神经科学”的情绪模型。该模型假设情绪对应于可变的神经模式。这些可变的模式被假设为是由所经历的情绪类别(如恐惧)决定的,部分是由所经历的情绪的背景决定的。背景包括文化和情况本身的组成部分。查佩尔山的北卡罗来纳州大学的克里斯汀·林德奎斯特博士和他的同事们提出了三个实验来检验这个模型。她的研究将使用脑事件的位置(功能性磁共振成像; fMRI)和脑事件的时间(脑电图; EEG)的测量。以这种方式整合情绪理论和技术可以帮助改善对情绪的沟通和理解,帮助我们预测情绪何时影响我们的决策和表现,并可能对我们与他人互动的方式有好处。这项拟议中的研究将情感理论与测量大脑活动的技术进步相结合,以从大脑状态中“读取”情感感受。其目的是发展一种情绪的情境神经科学,这将为我们理解情绪及其意识体验的基础提供信息。三个实验提出了研究的情绪和大脑活动的情景和文化背景的作用。第一个实验使用功能性磁共振(fMRI)检查恐惧和愤怒及其与大脑活动的情景和文化背景的相互作用。这种情况被操纵成社会或非社会的,文化源于美国和中国的本地人,他们知道各自文化的情感规范和价值观。 第二个实验扩展了这项调查的时间动态的情绪脑活动,使用脑电图(EEG)。第三项研究使用机器学习从先前的实验中获得的数据,以确定在不同的背景下,哪些变量最能预测情绪期间的大脑活动。了解情绪的情境本质对于了解神经回路如何映射到主观心理状态至关重要。这些发现可能会提高我们对自己和他人情绪体验的理解,并增强我们的沟通,幸福和外交关系。它还可能为情绪相关疾病和脑机接口领域的应用进步提供信息。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Culture and gender modulate dlPFC integration in the emotional brain: evidence from dynamic causal modeling
- DOI:10.1007/s11571-022-09805-2
- 发表时间:2022-05-25
- 期刊:
- 影响因子:3.7
- 作者:Pugh, Zachary H.;Huang, Jiali;Nam, Chang S.
- 通讯作者:Nam, Chang S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Lindquist其他文献
Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies
- DOI:
10.1016/j.neuroimage.2008.03.059 - 发表时间:
2008-08-15 - 期刊:
- 影响因子:
- 作者:
Hedy Kober;Lisa Feldman Barrett;Josh Joseph;Eliza Bliss-Moreau;Kristen Lindquist;Tor D. Wager - 通讯作者:
Tor D. Wager
21. The Role of Dopamine-Related Neurophysiology in Incentive-Boosted Cognitive Control and Associations With Substance Use
- DOI:
10.1016/j.biopsych.2024.02.256 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:
- 作者:
Jessica Flannery;Ashley Parr;Kristen Lindquist;Eva Telzer - 通讯作者:
Eva Telzer
Kristen Lindquist的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Lindquist', 18)}}的其他基金
The physiological hypothesis of affective aging
情感衰老的生理学假说
- 批准号:
1941712 - 财政年份:2020
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
相似国自然基金
基于Situated Cognition的适应性概念设计方法学研究
- 批准号:50505025
- 批准年份:2005
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
- 批准号:
FT230100121 - 财政年份:2024
- 资助金额:
$ 41.88万 - 项目类别:
ARC Future Fellowships
Evaluating social interventions to reduce health inequities using an adaptive platform trial situated in Canadian primary care practice-based research networks
使用加拿大初级保健实践研究网络中的适应性平台试验评估社会干预措施,以减少健康不平等
- 批准号:
481607 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Operating Grants
Culturally situated immersive virtual learning and engineering design to build STEM capacity in Dine communities
具有文化背景的沉浸式虚拟学习和工程设计,旨在培养餐饮社区的 STEM 能力
- 批准号:
2241802 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Conference: Socially Situated Language Processing: Special Sessions at the Human Sentence Processing 2024 Conference
会议:社会情境语言处理:2024 年人类句子处理会议特别会议
- 批准号:
2314725 - 财政年份:2023
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142594 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142783 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Constructing Situated Individual Decision Support System Based on Preference Data
基于偏好数据构建情境个体决策支持系统
- 批准号:
22K14444 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142439 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
Collaborative Research: Broadening Inclusive Participation in Artificial Intelligence Undergraduate Education for Social Good Using A Situated Learning Approach
合作研究:利用情景学习方法扩大人工智能本科教育的包容性参与以造福社会
- 批准号:
2142503 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Standard Grant
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
- 批准号:
2145565 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Continuing Grant