CompCog: Large-scale, empirically based, publicly accessible database of argument structure to support experimental and computational research
CompCog:大规模、基于经验、可公开访问的论证结构数据库,支持实验和计算研究
基本信息
- 批准号:1551834
- 负责人:
- 金额:$ 38.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A basic function of language is to say who did what to whom. Linguists have identified many of the ways English fits who, what, and whom into a sentence, but it is still unclear why different rules apply to different sentences. But the language system is far more complex than this example suggests. English has about 150 different ways of fitting who, what, and whom into a sentence. Consider the sentence "Agnes received the package from Bart" in which the subject of the sentence (Agnes) gets the package. In contrast, in "Agnes gave the package to Bart," Agnes is still the subject of the sentence but she doesn't get the package. We might also say "Agnes tore at the package" or "Agnes looked at the package" but "Agnes saw at the package" doesn't work. This variability is a problem for teaching language and for building more robust voice-enabled systems. In this project, the investigators organize a large team of citizen scientists to try to identify some of the rules of who, what, and whom in English by analyzing the grammar and meaning of over 6000 verbs. This project will develop and evaluate methods for harnessing the power of collaborations with citizen scientists, facilitating broader engagement of the public in science. This project focuses on characterizing the semantics of the 6340 verbs listed in VerbNet, the most complete compendium of verb argument structure. From VerbNet, the investigators will generate example sentences for every verb in every compatible argument structure. These sentences are posted onto a website (gameswithwords.org/VerbCorner) where volunteers can code these sentences for 100 semantic features that have been previously identified as likely being relevant to verb argument structure rules. The website incorporates a number of strategies in order to make volunteer participation more enjoyable and rewarding. As part of the project, the investigators will assess existing and new analytic models for determining when sufficient judgments have been collected for a given item. Given the increasing importance of crowd-sourcing, developing and assessing these models should provide dividends beyond the current project.
语言的一个基本功能是说谁对谁做了什么。语言学家已经确定了英语将who、what和whom放入句子的许多方法,但仍然不清楚为什么不同的规则适用于不同的句子。但语言系统远比这个例子所暗示的要复杂得多。英语有大约150种不同的方法来将who、what和whom放入一个句子中。考虑句子“Agnes received the package from Bart”,其中句子的主语(Agnes)得到了这个包裹。相反,在“Agnes gave the package to Bart”中,Agnes仍然是句子的主语,但她没有得到包裹。我们也可以说“Agnes tore at the package”或者“Agnes looked at the package”,但是“Agnes saw at the package”不起作用。这种可变性对于语言教学和构建更强大的语音系统来说是一个问题。在这个项目中,研究人员组织了一个由公民科学家组成的大型团队,试图通过分析6000多个动词的语法和含义来确定英语中关于谁、什么和谁的一些规则。该项目将开发和评估利用与公民科学家合作的力量的方法,促进公众更广泛地参与科学。这个项目的重点是描述动词论元结构最完整的纲要VerbNet中列出的6340个动词的语义。通过VerbNet,研究人员将为每个兼容的论元结构中的每个动词生成例句。这些句子被发布到一个网站(gameswithwords.org/VerbCorner)上,志愿者可以为这些句子编码100个语义特征,这些语义特征之前已经被确定为可能与动词论元结构规则相关。该网站纳入了一些战略,以使志愿人员的参与更加愉快和有益。作为该项目的一部分,研究人员将评估现有的和新的分析模型,以确定何时为给定项目收集了足够的判断。鉴于众包的重要性日益增加,开发和评估这些模式应能带来超出当前项目的红利。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Hartshorne其他文献
Joshua Hartshorne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Hartshorne', 18)}}的其他基金
CAREER: How Many Intuitive Physics Systems are There, and What Do They Mean for Physics Education
职业:有多少直观的物理系统,它们对物理教育意味着什么
- 批准号:
2238912 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别:
Continuing Grant
HNDS-I: Pushkin: Enabling large-scale citizen science data collection for the social, behavioral, and economic sciences
HNDS-I:普希金:为社会、行为和经济科学实现大规模公民科学数据收集
- 批准号:
2318474 - 财政年份:2023
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
POSE: Phase I: An open-source ecosystem for massive online experiments and citizen science
POSE:第一阶段:用于大规模在线实验和公民科学的开源生态系统
- 批准号:
2229631 - 财政年份:2022
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: A "Citizen Science" approach to COVID-19 social distancing effects on children's language development
RAPID:合作研究:采用“公民科学”方法研究 COVID-19 社交距离对儿童语言发展的影响
- 批准号:
2030106 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
Collaborative Research: A virtual workshop on conducting language research online: Enhancing the resilience of the language sciences in a time of social distancing
合作研究:在线进行语言研究的虚拟研讨会:在社会疏远时期增强语言科学的弹性
- 批准号:
2029637 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
Collaborative Research: NSF2026: EAGER: A Playground and Proposal for Growing an AGI.
合作研究:NSF2026:EAGER:发展 AGI 的游乐场和提案。
- 批准号:
2033938 - 财政年份:2020
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
RR: CompCog: A challenge suite for statistical word segmentation
RR:CompCog:统计分词挑战套件
- 批准号:
1918813 - 财政年份:2019
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
Workshop on Events in Language and Cognition 2016
2016年语言与认知活动研讨会
- 批准号:
1606285 - 财政年份:2016
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 38.31万 - 项目类别:
Fellowship
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
- 批准号:
2340341 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 38.31万 - 项目类别:
Standard Grant