Metric geometry and analysis on Einstein manifolds
爱因斯坦流形的度量几何和分析
基本信息
- 批准号:2304818
- 负责人:
- 金额:$ 22.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metric Riemannian geometry is a central subject in modern mathematics. The original concept dates back to Bernhard Riemann's famous Habilitation lecture "Ueber die hypothesen, welche der Geometrie zu Grunde liegen" (On the hypotheses which lie at the bases of geometry) delivered on 10 June 1854. The revolutionary creations in this lecture profoundly changed the global landscape of geometry. Specifically, Riemann proposed a novel strategy to generalize the geometry of surfaces to higher dimensions which he called Mannigfaltigkeiten (manifolds). A large variety of new notions and concepts were created: these include the notion of curvature which quantitatively measures how a space is curved, and the notion of geodesic which is a length-minimizing path connecting two points on a manifold. The studies of the metric structures of manifolds, what we now call metric Riemannian geometry, primarily focuses on the interplay between the global geometry of the underlying space and the metric structure, namely how the distance between two points can be realized or measured. This project is mainly concerned with the metric geometry of Einstein manifolds where the metric structures satisfy the Einstein equation in the theory of general relativity. The PI will integrate their research with training and mentorship at a variety of levels. This includes organizing summer workshops and mathematical retreats on Riemannian geometry; complex geometry and theoretical physics, and designing and developing new research oriented courses for undergraduate students. This project investigates the degenerations and quantitative behaviors of Einstein manifolds. In joint work with Song Sun, the PI has been working on the collapsing geometry of Einstein manifolds with special holonomy, leading to two major breakthroughs in the field: a complete classification of the Gromov-Hausdorff limits of the Einstein metrics on the K3 manifold, and a complete classification of asymptotic model geometries of gravitational instantons. The latter can be regarded as the bubble limits of the degenerating Einstein metrics on the K3 manifold. Building on this background, the PI will proceed to analogous questions in higher dimensions and investigate geometric structures for the degenerating Einstein metrics with generic holonomy in that setting. With a group of collaborators, the PI will also make advances in more refined geometry and moduli space problems regarding complete Calabi-Yau metrics. In a third direction, the PI will investigate the geometry and analysis of Poincare-Einstein spaces, which originated from the AdS/CFT correspondence in mathematical physics. The PI will focus on the singularity behaviors of degenerate operators on Poincare-Einstein manifolds, geometric finiteness and quantitative rigidity of Poincare-Einstein metrics, as well as regularity and degeneration theory of Poincare-Einstein metrics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
黎曼几何是现代数学的中心学科。最初的概念可以追溯到伯恩哈德·黎曼在1854年6月10日发表的著名的《论几何基础上的假设》(Ueber die hypothesis, welche der Geometrie zu Grunde liegen)。这个讲座中革命性的创造深刻地改变了全球几何的格局。具体来说,Riemann提出了一种将曲面几何推广到更高维度的新策略,他称之为Mannigfaltigkeiten(流形)。各种各样的新概念和概念被创造出来:其中包括曲率的概念,它定量地测量空间是如何弯曲的,以及测地线的概念,它是连接流形上两点的长度最小路径。流形度量结构的研究,即我们现在所说的度量黎曼几何,主要关注底层空间的全局几何与度量结构之间的相互作用,即如何实现或测量两点之间的距离。本课题主要研究爱因斯坦流形的度规几何,其中度规结构满足广义相对论中的爱因斯坦方程。PI将把他们的研究与不同层次的培训和指导结合起来。这包括组织夏季工作坊和黎曼几何数学静修;复杂几何和理论物理,以及为本科生设计和开发新的研究型课程。本课题研究爱因斯坦流形的退化和数量行为。在与宋孙的合作中,PI一直在研究具有特殊完整度的爱因斯坦流形的坍缩几何,导致了该领域的两个重大突破:K3流形上爱因斯坦测度的Gromov-Hausdorff极限的完全分类,以及引力瞬子渐近模型几何的完全分类。后者可以看作是退化的爱因斯坦度量在K3流形上的泡极限。在此背景下,PI将继续研究高维的类似问题,并研究在这种情况下具有一般完整度的退化爱因斯坦度量的几何结构。与一组合作者一起,PI还将在更精细的几何和模空间问题上取得进展,这些问题涉及完整的Calabi-Yau度量。在第三个方向上,PI将研究庞加莱-爱因斯坦空间的几何和分析,它起源于数学物理中的AdS/CFT对应。PI将重点研究简并算子在庞加莱-爱因斯坦流形上的奇异行为,庞加莱-爱因斯坦度量的几何有限性和定量刚性,以及庞加莱-爱因斯坦度量的正则性和退化理论。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruobing Zhang其他文献
Mitochondrial proteins that connected with calcium: do their pathways changes in PAH?
与钙相关的线粒体蛋白:它们的途径在 PAH 中是否会发生变化?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ruobing Zhang - 通讯作者:
Ruobing Zhang
Spectroscopic investigation of the bipolar pulsed discharge in water-air mixture
水-空气混合物中双极脉冲放电的光谱研究
- DOI:
10.1109/tps.2006.873232 - 发表时间:
2006 - 期刊:
- 影响因子:1.5
- 作者:
Ruobing Zhang;Liming Wang;Chi Zhang;Y. Nie;Yan Wu;Z. Guan - 通讯作者:
Z. Guan
Investigation of spectral bandwidth of BBO-I phase matching non-collinear optical parametric amplification from visible to near-infrared
BBO-I相位匹配非共线光参量放大可见光到近红外光谱带宽研究
- DOI:
10.1007/s12200-008-0014-4 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Bo Liu;Ruobing Zhang;Huagang Liu;Jing Ma;Chen Zhu;Qing - 通讯作者:
Qing
Complex structure degenerations and collapsing of Calabi-Yau metrics
Calabi-Yau 度量的复杂结构退化和崩溃
- DOI:
10.1090/s0894-0347-1990-1040196-6 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Song Sun;Ruobing Zhang - 通讯作者:
Ruobing Zhang
Collapsing geometry of hyperk"ahler 4-manifolds and applications
hyperk"ahler 4-流形的折叠几何及其应用
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Song Sun;Ruobing Zhang - 通讯作者:
Ruobing Zhang
Ruobing Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruobing Zhang', 18)}}的其他基金
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
- 批准号:
2212818 - 财政年份:2021
- 资助金额:
$ 22.23万 - 项目类别:
Continuing Grant
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
- 批准号:
1906265 - 财政年份:2019
- 资助金额:
$ 22.23万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Standard Grant
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Continuing Grant
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 22.23万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Continuing Grant
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
BRAIN CONNECTS: A Center for High-throughput Integrative Mouse Connectomics
大脑连接:高通量集成鼠标连接组学中心
- 批准号:
10665380 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Asymmetric Single-Chain MspA nanopores for electroosmotic stretching and sequencing proteins
用于电渗拉伸和蛋白质测序的不对称单链 MspA 纳米孔
- 批准号:
10646810 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别:
Inducing Off-pathway Assembly of HIV Gag Polyprotein with Computationally Designed Peptides
用计算设计的肽诱导 HIV Gag 多蛋白的非途径组装
- 批准号:
10724495 - 财政年份:2023
- 资助金额:
$ 22.23万 - 项目类别: