EAGER: BIGDATA: SMART Data - Academic Success Made Affordable, Rapid, and Timely through Integrated Data Analytics
EAGER:大数据:智能数据 - 通过集成数据分析,经济、快速、及时地取得学术成功
基本信息
- 批准号:1552288
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Academic Success Made Affordable, Rapid, and Timely through Integrated Data AnalyticsData science techniques have revolutionized many academic fields and led to terrific gains in the commercial sector. They have to date been underutilized in solving critical problems in the US educational system, particularly in understanding Science, Technology, Engineering and Mathematics (STEM) learning and learning environments, broadening participation in STEM, and increasing retention for students traditionally underserved in STEM. The goals of the Directorate for Education and Human Resources through the Critical Techniques and Technologies for Advancing Foundations and Applications of Big Data Science & Engineering (BIGDATA) program are to advance fundamental research aimed at understanding and solving these critical problems, and to catalyze the use of data science in Education Research. This Early Concept Grant for Exploratory Research (EAGER) will seek to understand the background and backbone of systems of data processing and analytics that can provide insights using standard types of data that colleges and universities already have (for example, from their Learning Management Systems, administrative data systems, and advising systems) to provide predictions and recommendations to students and instructors to increase the percentage of students who succeed in college and graduate on time. This has terrific potential to increase graduation rates at two- and four-year institutions, which can lower college costs for families and students. In addition, it has terrific potential to increase the attraction and retention of underrepresented minorities in STEM fields, as it will identify barriers for all students to graduating successfully and on time.The team vision is to eventually build a data platform that integrates key data sources and provides tools that leverage important insights from these sources. The types of data sources are: 1) longitudinal data from undergraduate students on their academic trajectories in STEM majors; 2) Learning management system (LMS) records of student activity, and 3) text data from a variety of sources, such as advisors. The tools will include a 1) GUI for students, teachers and administrators to see student academic pathways and 2) a portal for communication between students, faculty and advisors. This system will help students, teachers and admistrators engage in Data Driven Decision Making (D3M) around academic pathways to successful and on time graduation from college. This Early Concept Grant for Exploratory Research (EAGER) will solve many challenges that must be undertaken to achieve this vision and provide the solutions to those challenges to relevant communities in a variety of ways. The team has four goals for this early concept project. The first is to examine existing data and predictive models for understanding student success and retention and build a catalog of applications and data types available for decision making around pathways to these outcomes. The second goal is to describe design specifications, including data types, algorithms, and machine learning techniques that are needed to build the data platform. The third is to pilot research on critical elements of a D3M training program for undergraduate students, instructors and administrators. The final goal is to develop a design framework that builds ethics, privacy and security in from the ground up. All products will be made available as publications, curricula, or software shared openly on common forums such as GitHub.
通过集成数据分析使学术成功变得负担得起、快速和及时数据科学技术彻底改变了许多学术领域,并在商业领域带来了巨大的收益。到目前为止,它们在解决美国教育系统中的关键问题方面一直没有得到充分利用,特别是在了解科学、技术、工程和数学(STEM)学习和学习环境、扩大STEM的参与以及增加传统上STEM服务不足的学生的留住方面。教育和人力资源局通过推进大数据科学与工程(BigData)计划的基础和应用的关键技术和技术,目标是促进旨在理解和解决这些关键问题的基础研究,并促进数据科学在教育研究中的使用。这个探索性研究的早期概念助学金(AGER)将寻求了解数据处理和分析系统的背景和主干,这些系统可以使用学院和大学已经拥有的标准类型数据(例如,从他们的学习管理系统、管理数据系统和建议系统)提供见解,以便向学生和教师提供预测和建议,以提高学生在大学获得成功并按时毕业的比例。这极有可能提高两年制和四年制院校的毕业率,从而降低家庭和学生的大学费用。此外,它在增加STEM领域中未被充分代表的少数族裔的吸引力和留住方面具有极大的潜力,因为它将确定所有学生成功和按时毕业的障碍。该团队的愿景是最终建立一个整合关键数据源的数据平台,并提供利用这些来源的重要见解的工具。数据来源的类型是:1)来自STEM专业本科生学习轨迹的纵向数据;2)学生活动的学习管理系统(LMS)记录;3)来自各种来源的文本数据,如导师。这些工具将包括1)供学生、教师和管理人员查看学生学术路径的图形用户界面,以及2)学生、教师和导师之间进行交流的门户。该系统将帮助学生、教师和管理人员围绕成功和按时从大学毕业的学术途径进行数据驱动的决策(D3M)。这一早期探索性研究概念补助金将解决为实现这一愿景而必须面临的许多挑战,并以各种方式向相关社区提供应对这些挑战的解决方案。团队对这个早期概念项目有四个目标。首先是检查现有的数据和预测模型,以了解学生的成功和留存情况,并建立可用于围绕这些结果的路径进行决策的应用程序和数据类型的目录。第二个目标是描述设计规范,包括构建数据平台所需的数据类型、算法和机器学习技术。三是对面向本科生、教师和管理人员的D3M培训计划的关键要素进行试点研究。最终目标是开发一个从头开始构建道德、隐私和安全的设计框架。所有产品都将以出版物、课程或软件的形式在GitHub等公共论坛上公开分享。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna Madhavan其他文献
AC 2011-1873: UNDERSTANDING THE ENGINEERING EDUCATION RE-SEARCH PROBLEM SPACE USING INTERACTIVE KNOWLEDGE NET-WORKS
AC 2011-1873:使用交互式知识网络了解工程教育研究问题空间
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Krishna Madhavan;Hanjun Xian;B. Jesiek;P. Wankat - 通讯作者:
P. Wankat
Erratum to: A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair
- DOI:
10.1186/1754-1611-8-27 - 发表时间:
2014-11-28 - 期刊:
- 影响因子:6.500
- 作者:
Timothy N Snyder;Krishna Madhavan;Miranda Intrator;Ryan C Dregalla;Daewon Park - 通讯作者:
Daewon Park
Krishna Madhavan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna Madhavan', 18)}}的其他基金
Collaborative Research (EAGER): Data Ecosystem for Catalyzing Transformative Research in Engineering Education
协作研究(EAGER):促进工程教育变革性研究的数据生态系统
- 批准号:
1306377 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Deep Insights Anytime, Anywhere (DIA2) - Central Resource for Characterizing the TUES Portfolio through Interactive Knowledge Mining and Visualizations
协作研究:随时随地深入洞察 (DIA2) - 通过交互式知识挖掘和可视化来表征 TUES 产品组合的中心资源
- 批准号:
1123108 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Advancing engineering education through learner-centric, adaptive cyber-tools and cyber-environments
职业:通过以学习者为中心的自适应网络工具和网络环境推进工程教育
- 批准号:
0956819 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Knowledge Networks for Engineering Education Research (iKNEER)
合作研究:工程教育研究交互式知识网络(iKNEER)
- 批准号:
0935090 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Interactive Knowledge Networks for Engineering Education Research (iKNEER)
合作研究:工程教育研究交互式知识网络(iKNEER)
- 批准号:
0957015 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Advancing engineering education through learner-centric, adaptive cyber-tools and cyber-environments
职业:通过以学习者为中心的自适应网络工具和网络环境推进工程教育
- 批准号:
0747795 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RE@L: Research Environments Associated with Learning through Social Networks
RE@L:与社交网络学习相关的研究环境
- 批准号:
0726023 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2021 IEEE International Conference on Big Data (IEEE BigData 2021)
2021 年 IEEE 国际大数据会议 (IEEE BigData 2021) 的 NSF 学生旅费补助金
- 批准号:
2129417 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Building and InnovatinG: Digital heAlth Technology and Analytics (BIGDATA)
建设和创新:数字医疗技术和分析 (BIGDATA)
- 批准号:
10704045 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Building and InnovatinG: Digital heAlth Technology and Analytics (BIGDATA)
建设和创新:数字医疗技术和分析 (BIGDATA)
- 批准号:
10261325 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
REU Site: BIGDatA - Big Data Analytics for Cyber-physical Systems
REU 网站:BIGDatA - 网络物理系统的大数据分析
- 批准号:
1950121 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A Study on Embodied Expression based on Body Movement - Emotion Bigdata and Its Application for Machine Learning
基于肢体运动-情感大数据的具身表达研究及其在机器学习中的应用
- 批准号:
20H04096 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Building and InnovatinG: Digital heAlth Technology and Analytics (BIGDATA)
建设和创新:数字医疗技术和分析 (BIGDATA)
- 批准号:
10468951 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Hardware and software for power system and market studies using AI and bigdata techniques
使用人工智能和大数据技术进行电力系统和市场研究的硬件和软件
- 批准号:
RTI-2021-00192 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Research Tools and Instruments