CAREER: Data Representation and Modeling for Unleashing the Potential of Multi-Modal Wearable Sensing Systems

职业:释放多模态可穿戴传感系统潜力的数据表示和建模

基本信息

  • 批准号:
    1552828
  • 负责人:
  • 金额:
    $ 49.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

The recent increase in the variety and usage of wearable sensing systems allows for the continuous monitoring of health and wellness of users. The output of these systems enable individuals to make changes to their personal routines in order to minimize exposures to pollutants and maintain healthy levels of exercise. Furthermore, medical practitioners are using these systems to monitor proper activity levels for rehabilitation purposes and to monitor threatening conditions such as heart arrhythmias. However, there is substantial work to be done to facilitate the processing and interpretation of such information in order to maximize impact. This proposal develops a computational framework that models the complex interactions between physiological and environmental factors contributing to an individual's health. The contributions of this award will facilitate the broad adoption of wearable sensing platforms and innovative analytical tools by individuals and medical practitioners.This award develops methodology for the estimation and prediction of physiological responses and environmental factors, with the objective of enabling users to efficiently change their behavior. To accomplish this objective, the framework will build on tools from statistical analysis, topological data analysis, optimization theory and human behavior analysis. This novel framework will not only develop new formal techniques, but it will also serve as a bridge between these cross-disciplinary fields. In particular, the proposed hierarchical computational framework has the potential of providing a trade-off between accuracy and computational flexibility based on the choice of granularity of the representation. This award will: (1) develop methodology for the concurrent representation of physiological, kinematic and environmental states for inference purposes; (2) develop techniques for mapping representations between different systems to enable information sharing; and (3) develop techniques to maximize the impact on the behavior of individuals by building on the proposed data representation. The algorithm development will be informed by integration of limitations on embedded platforms due to memory, computational and power capabilities, and transmission costs when off-board processing is required. The proposed techniques will empower users and medical practitioners to understand, analyze, and make decisions based on patterns in the data. The outcomes of this project will empower medical practitioners by providing innovative and effective tools for wearable sensing systems which enable efficient pattern identification, data representation and visualization. Besides training students directly working on this project, the data sets and algorithms developed will be incorporated into a new graduate course on computational techniques for physiological and environmental sensing. Undergraduate students will be engaged by participating in data collection experiments, REUs, and local demonstrations. Underrepresented undergraduate student communities will be exposed to the research at the national level by presenting demos at well-known diversity conferences in the STEM fields. Furthermore, K-12 local student communities will be engaged via summer workshops that will be prepared for students and educators.
最近可穿戴感测系统的种类和使用的增加允许持续监测用户的健康和健康。 这些系统的输出使个人能够改变他们的个人惯例,以尽量减少污染物的暴露,并保持健康的运动水平。此外,医疗从业者正在使用这些系统来监测用于康复目的的适当活动水平,并监测诸如心律失常的威胁状况。然而,要促进处理和解释这类信息,以最大限度地发挥影响,仍有大量工作要做。该建议开发了一个计算框架,该框架模拟了有助于个人健康的生理和环境因素之间的复杂相互作用。该奖项的贡献将促进个人和医疗从业者广泛采用可穿戴传感平台和创新分析工具。该奖项开发了用于估计和预测生理反应和环境因素的方法,旨在使用户能够有效地改变他们的行为。为了实现这一目标,该框架将建立在统计分析、拓扑数据分析、优化理论和人类行为分析等工具的基础上。这种新颖的框架不仅将开发新的形式化技术,而且还将作为这些跨学科领域之间的桥梁。特别是,所提出的分层计算框架具有提供基于表示的粒度的选择的准确性和计算灵活性之间的权衡的潜力。该奖项将:(1)开发用于同时表示生理、运动和环境状态的方法,以用于推理目的;(2)开发用于在不同系统之间映射表示的技术,以实现信息共享;以及(3)开发通过建立在所提议的数据表示的基础上来最大化对个人行为的影响的技术。 算法开发将通过集成嵌入式平台上的限制来通知,这些限制是由于内存、计算和功率能力以及需要板外处理时的传输成本。所提出的技术将使用户和医疗从业者能够根据数据中的模式来理解、分析和做出决策。该项目的成果将通过为可穿戴传感系统提供创新和有效的工具来增强医疗从业人员的能力,这些工具可以实现有效的模式识别,数据表示和可视化。除了培训直接从事该项目的学生外,开发的数据集和算法将被纳入一门关于生理和环境传感计算技术的新研究生课程。本科生将参与数据收集实验,雷乌斯,和当地的示范。代表性不足的本科生社区将通过在STEM领域的知名多样性会议上展示演示来接触国家层面的研究。此外,K-12当地学生社区将通过为学生和教育工作者准备的夏季研讨会参与。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edgar Lobaton其他文献

A Pilot Study Testing Adherence to Multiple Digital Health Tools among Adolescents with Asthma
一项测试哮喘青少年对多种数字健康工具依从性的试点研究
  • DOI:
    10.1016/j.jaci.2023.11.594
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Jeremy Owens;Katherine Mills;Jeffrey Barahona;Edgar Lobaton;Delesha Carpenter;Alper Bozkurt;Michelle Hernandez
  • 通讯作者:
    Michelle Hernandez

Edgar Lobaton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edgar Lobaton', 18)}}的其他基金

SCH: INT: Collaborative Research: A Data-Driven Approach for Enhancing Wearable Device Performance - A Study on Early Detection of Asthma Exacerbation
SCH:INT:协作研究:增强可穿戴设备性能的数据驱动方法 - 哮喘恶化早期检测的研究
  • 批准号:
    1915599
  • 财政年份:
    2019
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
Collaborative Research: FORABOT: An Autonomous and Accessible System for Sorting Foraminifera
合作研究:FOABOT:一种用于分选有孔虫的自主且可访问的系统
  • 批准号:
    1829930
  • 财政年份:
    2019
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Visual System for Autonomous Foraminifera Identification
合作研究:自主有孔虫识别的视觉系统
  • 批准号:
    1637039
  • 财政年份:
    2016
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
Accurate representation of quantum data for promoting materials science and quantum technology
量子数据的准确表示,促进材料科学和量子技术
  • 批准号:
    23K03307
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cross-modal Deep Learning of Sizzle Representation for Social Media Data
社交媒体数据 Sizzle 表示的跨模态深度学习
  • 批准号:
    23K11340
  • 财政年份:
    2023
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Increasing representation of Black communities in COVID-19 home testing and surveillance data
增加黑人社区在 COVID-19 家庭测试和监测数据中的代表性
  • 批准号:
    10845413
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
Increasing representation of Black communities in COVID-19 home testing and surveillance data
增加黑人社区在 COVID-19 家庭测试和监测数据中的代表性
  • 批准号:
    10617065
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
Representation learning and exploration of data geometries
数据几何的表示学习和探索
  • 批准号:
    RGPIN-2021-03267
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Discovery Grants Program - Individual
Causal Representation Learning for the Spatial Analysis of Transcriptomic and Imaging Data in Tissue Contexts
用于组织环境中转录组和成像数据空间分析的因果表示学习
  • 批准号:
    10471669
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
A Tensor-based Data Representation and Processing Framework in Cyber-Physical-Social Systems
网络物理社会系统中基于张量的数据表示和处理框架
  • 批准号:
    RGPIN-2014-06326
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Uncovering and Exploiting Multiscale Structures in Big Data Using Diffusion-Based Representation and Optimal Sampling
LEAPS-MPS:使用基于扩散的表示和最佳采样来发现和利用大数据中的多尺度结构
  • 批准号:
    2232344
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Standard Grant
New Data Representation and Learning Models for Temporal Health Forecasting
用于时间健康预测的新数据表示和学习模型
  • 批准号:
    RGPIN-2021-04386
  • 财政年份:
    2022
  • 资助金额:
    $ 49.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了