CAREER: Scaling Approximate Inference and Approximation-Aware Learning

职业:扩展近似推理和近似感知学习

基本信息

  • 批准号:
    1553547
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2017-11-30
  • 项目状态:
    已结题

项目摘要

The last decade has seen an enormous increase in our ability to gather and manage large amounts of data; business, healthcare, education, economy, science, and almost every aspect of society are accumulating data at unprecedented levels. The basic premise is that by having more data, even if uncertain and of lower quality, we are also able to make better-informed decisions. To make any decisions, we need to perform "inference" over the data, i.e. to either draw new conclusions, or to find support for existing hypotheses, thus allowing us to favor one course of action over another. However, general reasoning under uncertainty is highly intractable, and many state-of-the-art systems today perform approximate inference by reverting to sampling. Thus for many modern applications (such as information extraction, knowledge aggregation, question-answering systems, computer vision, and machine intelligence), inference is a key bottleneck, and new methods for tractable approximate inference are needed.This project addresses the challenge of scaling inference by generalizing two highly scalable approximate inference methods and complementing them with scalable methods for parameter learning that are "approximation-aware." Thus, instead of treating the (i) learning and the (ii) inference steps separately, this project uses the approximation methods developed for inference also for learning the model. The research hypothesis is that this approach increases the overall end-to-end prediction accuracy while simultaneously increasing scalability. Concretely, the project develops the theory and a set of scalable algorithms and optimization methods for at least the following four sub-problems: (1) approximating general probabilistic conjunctive queries with standard relational databases; (2) learning the probabilities in uncertain databases based on feedback on rankings of output tuples from general queries; (3) approximating the exact probabilistic inference in undirected graphical models with linearized update equations; and (4) complementing the latter with a robust framework for learning linearized potentials from partially labeled data.
在过去的十年里,我们收集和管理大量数据的能力有了巨大的提高。商业、医疗保健、教育、经济、科学以及社会的几乎各个方面都在以前所未有的水平积累数据。基本前提是,通过拥有更多数据,即使数据不确定且质量较低,我们也能够做出更明智的决策。为了做出任何决定,我们需要对数据进行“推理”,即得出新的结论,或者找到对现有假设的支持,从而使我们能够支持一种行动方案而不是另一种行动方案。然而,不确定性下的一般推理非常棘手,当今许多最先进的系统通过恢复采样来执行近似推理。因此,对于许多现代应用(例如信息提取、知识聚合、问答系统、计算机视觉和机器智能)来说,推理是一个关键瓶颈,需要新的易于处理的近似推理方法。该项目通过推广两种高度可扩展的近似推理方法并用“近似感知”的可扩展参数学习方法对其进行补充来解决扩展推理的挑战。因此,该项目不是单独处理 (i) 学习和 (ii) 推理步骤,而是使用为推理开发的近似方法,也用于学习模型。研究假设是,这种方法提高了整体端到端预测准确性,同时提高了可扩展性。具体来说,该项目至少针对以下四个子问题开发了理论和一套可扩展的算法和优化方法:(1)用标准关系数据库逼近一般概率联合查询; (2)根据一般查询输出元组排名的反馈来学习不确定数据库中的概率; (3) 用线性化更新方程逼近无向图模型中的精确概率推理; (4)用一个强大的框架来补充后者,用于从部分标记的数据中学习线性化势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolfgang Gatterbauer其他文献

Dissociation and propagation for approximate lifted inference with standard relational database management systems
使用标准关系数据库管理系统进行近似提升推理的分离和传播
  • DOI:
    10.1007/s00778-016-0434-5
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wolfgang Gatterbauer;Dan Suciu
  • 通讯作者:
    Dan Suciu
Bringing Provenance to Its Full Potential Using Causal Reasoning
利用因果推理充分发挥起源的潜力
Managing Structured Collections of Community Data
管理社区数据的结构化集合
A Tutorial on Visual Representations of Relational Queries
  • DOI:
    10.14778/3611540.3611578
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wolfgang Gatterbauer
  • 通讯作者:
    Wolfgang Gatterbauer
The Linearization of Belief Propagation on Pairwise Markov Random Fields
成对马尔可夫随机场上置信传播的线性化
  • DOI:
    10.1609/aaai.v31i1.11059
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wolfgang Gatterbauer
  • 通讯作者:
    Wolfgang Gatterbauer

Wolfgang Gatterbauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolfgang Gatterbauer', 18)}}的其他基金

CAREER: Scaling Approximate Inference and Approximation-Aware Learning
职业:扩展近似推理和近似感知学习
  • 批准号:
    1762268
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

Scaling a Digital Treasure Hunt Game
扩展数字寻宝游戏
  • 批准号:
    ES/Y01104X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
  • 批准号:
    EP/Z53304X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
  • 批准号:
    ES/Z502807/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Beyond experiments: scaling transformative, sustainable business models in the UK
超越实验:在英国扩展变革性、可持续的商业模式
  • 批准号:
    MR/X035786/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship
Study on mitigation of gypsum scaling during membrane distillation operation
膜蒸馏运行过程中石膏结垢缓解研究
  • 批准号:
    24K17543
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Oxygen vacancy engineering on indium oxide vertical FETs for 3D power scaling
用于 3D 功率缩放的氧化铟垂直 FET 上的氧空位工程
  • 批准号:
    24K17328
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了