CAREER: Beyond Condensation Reactions and Polymer Casting: New Water Treatment Membrane Materials Through Electropolymerization

职业:超越缩合反应和聚合物浇铸:通过电聚合的新型水处理膜材料

基本信息

  • 批准号:
    1553756
  • 负责人:
  • 金额:
    $ 51.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

1553756JassbyAlthough the water treatment community developed methods to control biofilms, organic fouling, and mineral scaling on membranes, these methods are often cost-prohibitive. By leveraging the principal investigator's (PI's) expertise in electrochemistry, membrane separations, and colloidal science, this project will advance the science and engineering of water treatment processes with a clear improvement over existing best practices. This project embodies the PI's goal of ensuring safe and plentiful water resources in a rapidly changing global environment by applying innovative technological solution. Electrochemical reactions have the potential to solve many of the most persistent challenges facing membrane-based water treatment processes. These challenges can be summarized as: 1) the sensitivity of reverse osmosis and nanofiltration membranes to oxidizing chemicals, such as chlorine, which significantly complicates biofilm management and membrane cleaning operations, and, 2) membrane fouling in in ultrafiltration and membrane distillation processes. This project will address both of these problems by applying electrochemical methods. The PI will use electropolymerization to fabricate a new generation of chlorine-resistant, smooth nanofiltration and reverse osmosis membranes, and electro-polymerize conducting polymers onto porous carbon nanotubes to form electroactive ultrafiltration and membrane distillation membrane materials that are resistant to electrocorrosion. The project is based on the central hypotheses that that electropolymerized polymeric films can maintain the chemical structures and transport properties critical to membrane separation processes while providing improved functionalities. The first major objective of the project is to fabricate, characterize, and test an electropolymerized material that combines the transport properties critical to nanofiltration and reverse osmosis processes with chlorine-resistance and a smooth surface. This objective will be pursued by developing appropriate electrically conducting substrates, identifying potential monomers, testing/characterizing the electropolymerized materials, and modeling the resulting polymeric material. The second major objective is to form electrically conducting ultrafiltration and membrane distillation membrane materials that can be used as anodes at high electrical potentials without suffering from electro-corrosion, and that can participate in electrooxidation reactions. This objective will be pursued by electropolymerizing conducting polymers onto carbon nanotubes substrates, characterizing the electrochemical, chemical and physical properties of the composite material, and describing the transport properties of the membrane materials. Finally, all the membranes will be tested for their anti-fouling properties using model organic and inorganic foulants. Electropolymerized chlorine-resistant nanofiltration and reverse osmosis materials and electro-corrosion resistant conducting membranes represent an advancement in membrane-based water treatment processes. They have potential applications in wastewater reuse, seawater desalination, and groundwater treatment. The project will develop fundamental understanding of the electrochemical reactions taking place during the fabrication of the new reverse osmosis material and during the electrochemical reduction of nitrate. The research plan directly addresses the NSF Environmental Engineering Program's emphasis on enhancing the availability of high quality water supplies. The focus of the education plan is to provide disabled military veterans with internships in order to attract/maintain them in STEM fields Additionally, the PI works at a Hispanic-serving institution and collaborates with a community college that serves Hispanics.
尽管水处理界开发了控制膜上的生物膜、有机污染和矿物结垢的方法,但这些方法通常成本过高。通过利用主要研究者(PI)在电化学,膜分离和胶体科学方面的专业知识,该项目将推进水处理过程的科学和工程,并对现有的最佳实践进行明显改进。该项目体现了PI的目标,即通过应用创新的技术解决方案,在快速变化的全球环境中确保安全和充足的水资源。电化学反应有可能解决基于膜的水处理工艺所面临的许多最持久的挑战。这些挑战可以概括为:1)反渗透和纳滤膜对氧化化学品(例如氯)的敏感性,这显著地使生物膜管理和膜清洁操作复杂化,以及2)超滤和膜蒸馏过程中的膜污染。本项目将通过应用电化学方法来解决这两个问题。PI将利用电聚合技术制造新一代耐氯、光滑的纳滤和反渗透膜,并将导电聚合物附着在多孔碳纳米管上,形成耐电腐蚀的电活性超滤和膜蒸馏膜材料。该项目基于中心假设,即电聚合聚合物膜可以保持对膜分离过程至关重要的化学结构和传输特性,同时提供改进的功能。该项目的第一个主要目标是制造、表征和测试一种电聚合材料,该材料将对纳滤和反渗透过程至关重要的传输特性与耐氯性和光滑表面相结合。这一目标将通过开发适当的导电基板,确定潜在的单体,测试/表征电聚合材料,并建模所得的聚合物材料。第二个主要目的是形成导电的超滤和膜蒸馏膜材料,其可以在高电势下用作阳极而不遭受电腐蚀,并且可以参与电氧化反应。这一目标将通过电聚合导电聚合物到碳纳米管基板上,表征复合材料的电化学,化学和物理性质,并描述膜材料的传输性能来实现。最后,将使用模型有机和无机污垢测试所有膜的抗污垢性能。电聚合耐氯纳滤和反渗透材料以及耐电腐蚀导电膜代表了基于膜的水处理工艺的进步。它们在废水回用、海水淡化和地下水处理方面具有潜在的应用。该项目将发展对新型反渗透材料制造过程中和硝酸盐电化学还原过程中发生的电化学反应的基本理解。该研究计划直接解决了NSF环境工程计划对提高高质量供水可用性的重视。教育计划的重点是为残疾退伍军人提供实习机会,以吸引/维持他们在STEM领域的工作。此外,PI在一个为西班牙裔服务的机构工作,并与一所为西班牙裔服务的社区学院合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jassby其他文献

Generating buoyancy-driven convection in membrane distillation
  • DOI:
    10.1016/j.memsci.2024.123043
  • 发表时间:
    2024-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Miles Mabry;Federico Municchi;Yiming Liu;Jingbo Wang;Tzahi Y. Cath;Craig S. Turchi;Michael B. Heeley;Eric M.V. Hoek;David Jassby;Denis Martinand;Nils Tilton
  • 通讯作者:
    Nils Tilton
Removal of As(III) by Electrically Conducting Ultrafiltration Membranes
  • DOI:
    10.1016/j.watres.2021.117592
  • 发表时间:
    2021-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shengcun Ma;Fan Yang;Xin Chen;Chia Miang Khor;Bongyeon Jung;Arpita Iddya;Gaurav Sant;David Jassby
  • 通讯作者:
    David Jassby
Superstructure-based optimization of membrane network systems for multicomponent liquid mixture separation
基于上层结构的多组分液体混合物分离膜网络系统优化
  • DOI:
    10.1016/j.memsci.2024.123574
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    9.000
  • 作者:
    Harshit Verma;David Jassby;Christos T. Maravelias
  • 通讯作者:
    Christos T. Maravelias
Comparison of the colloidal stability, mobility, and performance of nanoscale zerovalent iron and sulfidated derivatives
纳米零价铁及其硫化衍生物的胶体稳定性、迁移率和性能比较
  • DOI:
    10.1016/j.jhazmat.2020.122691
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Yiming Su;David Jassby;Yalei Zhang;Arturo A. Keller;Adeyemi S. Adeleye
  • 通讯作者:
    Adeyemi S. Adeleye
Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane
利用电化学碳纳米管膜去除甾体激素微污染物中吸附与降解的差异
  • DOI:
    10.1038/s41467-024-52730-7
  • 发表时间:
    2024-11-04
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Siqi Liu;David Jassby;Daniel Mandler;Andrea I. Schäfer
  • 通讯作者:
    Andrea I. Schäfer

David Jassby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jassby', 18)}}的其他基金

NSF-BSF: Impact of Electric- and Flow-Fields on Surfactant-Stabilized Emulsion Properties During Oil/Water Separation
NSF-BSF:油/水分离过程中电场和流场对表面活性剂稳定乳液性能的影响
  • 批准号:
    1926360
  • 财政年份:
    2019
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Standard Grant
CAREER: Beyond Condensation Reactions and Polymer Casting: New Water Treatment Membrane Materials Through Electropolymerization
职业:超越缩合反应和聚合物浇铸:通过电聚合的新型水处理膜材料
  • 批准号:
    1838394
  • 财政年份:
    2017
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Standard Grant

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Standard Grant
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301405
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Continuing Grant
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 51.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了