CAREER: Multiscale Study of the Structure and Dynamics of Nanoparticle-Protein Coronae

职业:纳米颗粒蛋白冠的结构和动力学的多尺度研究

基本信息

  • 批准号:
    1553945
  • 负责人:
  • 金额:
    $ 50.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Proposal: 1553945PI: Ding, Feng With the rapid development of nanotechnology, engineered nanoparticles (NPs) may be released to the environmental and biological systems either purposely or accidentally. With many proteins enriched in the environmental and biological media as the functional building blocks, they can be absorbed onto the NP surface, forming the so-called NP-protein corona. It is the protein coronae rather than the original NPs that are "seen" by cells and tissues and subsequently determine the biological and/or pathological functions of these released NPs. The objective of this proposal is to develop and apply state-of-the-art computer simulation methods to understand the fundamental aspects of the corona formation and to determine the physical and chemical properties of NPs that dictate the protein absorption. The obtained knowledge will help guide the design of novel NPs that promotes the intended biological functions and prevents the unintended pathological responses, enabling the "safe-by-design" to the broad scientific and engineering community for modeling and predicting corona formation and rapid risk assessment of NP exposures. In this CAREER proposal, the PI proposes to apply the multiscale discrete molecular dynamics (DMD) methodology to characterize the structure and dynamics of NP-protein corona and to identify the physicochemical determinants of the NP-protein interactions. The objective of this research will be accomplished by pursuing the following specific aims: 1) Develop NP models and their interactions with biomolecules for DMD simulations; 2) Uncover the physicochemical determinants of NP-protein binding; 3) Characterize the structure and dynamics of protein aggregation in the corona; and 4) Extend the research and education in classroom and laboratory more broadly to other education and scientific research community. The developed and validated computational methodology will be shared with the broad scientific research communities. The proposed research projects will uncover the structural and dynamic properties of NP-protein corona at the molecular and atomic level and determine the physicochemical determinants of the molecular complex formation. The obtained results from the proposed mechanistic studies will be pivotal in designing more efficient and safe NPs with optimal properties to promote intended biological functions and minimize the pathological implications of NP exposure. Broader impacts of this proposal include the sustainable development of nanotechnology and improves applications of nanomedicine. Funding of this research will also support students training at the interfaces of physics, material science, biology, and environmental science and engineering, update physics curriculum to reflect the current trend in science, and increase the diversity of physics education and research. The proposed research will develop and validate critical predictive tools to effectively and efficiently model the nano-bio interface, which can be used for engineering NPs with novel biological functions as well as for NP risk assessment. In addition, easy accessibility and enhanced usability of the developed tools will benefit the broad science and engineering community working in the field.
提案人:1553945 PI:Ding,Feng 随着纳米技术的迅速发展,工程纳米粒子(NPs)可能会被有意或无意地释放到环境和生物系统中。由于许多蛋白质在环境和生物介质中富集作为功能构建块,它们可以被吸附到NP表面,形成所谓的NP-蛋白质冠。细胞和组织“看到”的是蛋白质冠而不是原始NP,并且随后确定这些释放的NP的生物学和/或病理学功能。该提案的目的是开发和应用最先进的计算机模拟方法,以了解电晕形成的基本方面,并确定决定蛋白质吸收的NP的物理和化学性质。所获得的知识将有助于指导新型NP的设计,促进预期的生物功能并防止意外的病理反应,使“设计安全”能够广泛的科学和工程界用于建模和预测电晕形成以及NP暴露的快速风险评估。在本CAREER提案中,PI建议应用多尺度离散分子动力学(DMD)方法来表征NP-蛋白质冠的结构和动力学,并确定NP-蛋白质相互作用的物理化学决定因素。本研究的主要目标是:1)建立用于DMD模拟的NP模型及其与生物分子的相互作用; 2)揭示NP与蛋白质结合的物理化学决定因素; 3)表征蛋白质在冠层中聚集的结构和动力学;(4)将课堂和实验室的研究和教育更广泛地扩展到其他教育和科研领域。开发和验证的计算方法将与广大的科学研究界分享。拟议的研究项目将在分子和原子水平上揭示NP-蛋白质冠的结构和动力学特性,并确定分子复合物形成的物理化学决定因素。从所提出的机制研究中获得的结果将是设计具有最佳特性的更有效和安全的NP的关键,以促进预期的生物学功能并最大限度地减少NP暴露的病理学影响。这一提议的更广泛影响包括纳米技术的可持续发展和提高纳米医学的应用。这项研究的资金还将支持学生在物理学,材料科学,生物学和环境科学与工程的接口培训,更新物理课程,以反映当前的科学趋势,并增加物理教育和研究的多样性。拟议的研究将开发和验证关键的预测工具,以有效和高效地模拟纳米生物界面,这可用于工程纳米粒子与新的生物功能,以及纳米粒子的风险评估。此外,所开发工具的易用性和增强的可用性将使在该领域工作的广大科学和工程界受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feng Ding其他文献

Thermo- and pH-Responsive Fibrillization of Squid Suckerin A1H1 Peptide
鱿鱼 Suckerin A1H1 肽的温度和 pH 响应性纤维化
  • DOI:
    10.1039/c9nr09271d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yunxiang Sun;Feng Ding
  • 通讯作者:
    Feng Ding
PKD3 is required for prostratin-activated HIV-1 transcription
前列腺素激活的 HIV-1 转录需要 PKD3
Linguistic Steganalysis With Graph Neural Networks
使用图神经网络的语言隐写分析
  • DOI:
    10.1109/lsp.2021.3062233
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hanzhou Wu;Biao Yi;Feng Ding;Guorui Feng;Xinpeng Zhang
  • 通讯作者:
    Xinpeng Zhang
Optimal Adaptive Filtering Algorithm by Using the Fractional-Order Derivative
利用分数阶导数的最优自适应滤波算法
  • DOI:
    10.1109/lsp.2021.3136504
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiao Zhang;Feng Ding
  • 通讯作者:
    Feng Ding
Epitaxial nucleation of CVD bilayer graphene on copper
铜上 CVD 双层石墨烯的外延成核
  • DOI:
    10.1039/c6nr04557j
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yenan Song;Jianing Zhuang;Meng Song;Shaoqian Yin;Yu Cheng;Xuewei Zhang;Miao Wang;Rong Xiang;Yang Xia;Shigeo Maruyama;Pei Zhao;Feng Ding;Hongtao Wang
  • 通讯作者:
    Hongtao Wang

Feng Ding的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feng Ding', 18)}}的其他基金

RAPID: Aptamer-Linked Nano-Plasmon Sensor for Rapid Detection of SARS-CoV-2
RAPID:适配体连接的纳米等离子传感器,用于快速检测 SARS-CoV-2
  • 批准号:
    2030828
  • 财政年份:
    2020
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
Extrapolating the Concept of Protein Corona for Understanding Nanoparticles at Large
推断蛋白质电晕的概念以全面了解纳米颗粒
  • 批准号:
    1232724
  • 财政年份:
    2012
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
CAREER: A coupled multiscale study of phase change dynamics at curved liquid-vapor interfaces
职业:弯曲液-汽界面相变动力学的耦合多尺度研究
  • 批准号:
    2339757
  • 财政年份:
    2024
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Continuing Grant
Model-driven Study of Host Cell Multiscale Dynamics in Viral Infection
病毒感染中宿主细胞多尺度动力学的模型驱动研究
  • 批准号:
    22KJ1417
  • 财政年份:
    2023
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2318107
  • 财政年份:
    2023
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
Development of a multiscale sediment connectivity model to improve global sediment yield predictions and study the effects of land use and climate change on soil erosion
开发多尺度沉积物连通性模型,以改善全球沉积物产量预测并研究土地利用和气候变化对土壤侵蚀的影响
  • 批准号:
    559400-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223392
  • 财政年份:
    2022
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
Multiscale experimental and numerical study of the thermomechanical behavior of composite sandwich panels towards the integration of environmental effects to the virtual testing method
复合材料夹芯板热机械行为的多尺度实验和数值研究,将环境影响整合到虚拟测试方法中
  • 批准号:
    RGPIN-2021-04227
  • 财政年份:
    2022
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223078
  • 财政年份:
    2022
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2223171
  • 财政年份:
    2022
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
CAREER: From Pore to Pipe: A Multiscale Experimental and Numerical Study of Piping in Unsaturated Soil
职业:从孔隙到管道:非饱和土中管道的多尺度实验和数值研究
  • 批准号:
    2047402
  • 财政年份:
    2021
  • 资助金额:
    $ 50.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了