CAREER: Engineering electrode-electrolyte interfaces through electrolyte selection for improved performance in lithium-air batteries and fuel cell electrocatalysis
职业:通过选择电解质来设计电极-电解质界面,以提高锂空气电池和燃料电池电催化的性能
基本信息
- 批准号:1554273
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract - Viswanathan, 1554273For the mass-market adoption of environmentally benign electric vehicles a breakthrough in battery technology in terms of specific energy and cost is needed. Specific energy, also known as energy density, is the stored heat or other thermodynamic property of a substance, which for these purposes should be its useful or extractable energy. Among the candidate chemistries being considered, non-aqueous Li-air batteries are attractive due to their high specific energy and relatively low cost. However, the limited discharge capacity and rechargeability are two key issues that limit their practicality. The proposed research of using electrolyte additives could increase the limited discharge capacity of current non-aqueous Li-air batteries without sacrificing battery rechargeability. The methods and findings will also be broadly applicable to other metal-air battery technologies currently being pursued, such as sodium-air, magnesium-air and potassium-air. Robust electrode/electrolyte interfaces are a crucial requirement for the long-term reliability of fuel cells and batteries. This proposal addresses the mesoscale electrode/electrolyte problem in the context of electrochemical systems using two model problems: (i) tune the electrode/electrolyte interface through electrolyte modification to tailor the activity and selectivity of Pt group metals for aqueous oxygen reduction reaction and (ii) design compatible electrode and electrolyte combinations that possess interfacial stability in lithium-air batteries while solubilizing the discharge product.If successful, these batteries could advance the adoption of electric vehicles for reduced emissions, greater efficiency, and increased domestic energy security. The PI ran a successful massive open online course (MOOC) from Carnegie Mellon University on Statistical Thermodynamics and intends to continue offering this annually. He will supplement the MOOC by developing learning kits, which can be remotely 3D printed. He will also develop a new course on electrochemical energy systems and develop the course notes into an interactive and animation-rich in-progress electronic-textbook and will conduct workshops on "How batteries work?" at underrepresented Pittsburgh public schools with the aim of illustrating basic principles of thermodynamics.
摘要- Viswanathan,1554273对于环境友好型电动汽车的大众市场采用,需要在电池技术的比能量和成本方面取得突破。比能,也称为能量密度,是物质储存的热量或其他热力学性质,对于这些目的,应该是其有用或可提取的能量。在正在考虑的候选化学物质中,非水锂空气电池由于其高比能量和相对低的成本而具有吸引力。然而,有限的放电容量和可充电性是限制其实用性的两个关键问题。所提出的使用电解质添加剂的研究可以在不牺牲电池可充电性的情况下增加当前非水锂空气电池的极限放电容量。这些方法和发现也将广泛适用于目前正在研究的其他金属空气电池技术,如钠-空气、镁-空气和钾-空气。坚固的电极/电解质界面是燃料电池和蓄电池长期可靠性的关键要求。该建议使用两个模型问题解决电化学系统背景下的中尺度电极/电解质问题:(i)通过电解质改性来调节电极/电解质界面,以定制Pt族金属对于水性氧还原反应的活性和选择性,以及(ii)设计在锂离子电池中具有界面稳定性的相容电极和电解质组合。如果成功,这些电池可以推动电动汽车的采用,以减少排放,提高效率,并增加国内能源安全。PI在卡内基梅隆大学成功举办了一个关于统计热力学的大规模开放式在线课程(MOOC),并打算每年继续提供。他将通过开发可以远程3D打印的学习工具包来补充MOOC。他还将开发一门关于电化学能源系统的新课程,并将课程笔记开发成一本互动和动画丰富的电子教科书,并将举办关于“电池如何工作?“在代表性不足的匹兹堡公立学校,目的是说明热力学的基本原理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatasubraman Viswanathan其他文献
Venkatasubraman Viswanathan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatasubraman Viswanathan', 18)}}的其他基金
Collaborative Research: Understanding ion solvation effects in nonaqueous oxygen electroreduction reactions
合作研究:了解非水氧电还原反应中的离子溶剂化效应
- 批准号:
1604898 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Engineering of Stretchable Neural Interfaces Using Liquid Metals for Stable Electrical Communication and Adaptive Stiffness Transformation
使用液态金属实现稳定电通信和自适应刚度变换的可拉伸神经接口工程
- 批准号:
10666925 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Patterning human forebrain organoids by engineering controlled biochemical microenvironment
通过工程控制的生化微环境来图案化人类前脑类器官
- 批准号:
10508548 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Topological Defect Engineering on Carbon Electrode for Advanced Batteries
先进电池碳电极的拓扑缺陷工程
- 批准号:
22K14757 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Electrode Engineering for Carbon Dioxide Electroreduction to Fuels and Chemicals
二氧化碳电还原燃料和化学品的电极工程
- 批准号:
RGPIN-2020-04880 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Patterning human forebrain organoids by engineering controlled biochemical microenvironment
通过工程控制的生化微环境来图案化人类前脑类器官
- 批准号:
10671748 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Selective Ethylene Production from Carbon Dioxide Electroreduction via Gas Diffusion Electrode Engineering
通过气体扩散电极工程从二氧化碳电还原选择性生产乙烯
- 批准号:
2033343 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Engineering Human Interneurons for Neural Repair
工程人类中间神经元用于神经修复
- 批准号:
10559499 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Electrode Engineering for Carbon Dioxide Electroreduction to Fuels and Chemicals
二氧化碳电还原燃料和化学品的电极工程
- 批准号:
RGPIN-2020-04880 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Engineering principles for sustainable organic electrode materials
可持续有机电极材料的工程原理
- 批准号:
2124604 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Electrochemical sensing probe for chemical oxygen demand (COD) assay in waste water: molecular-scale particle design, electrode engineering and system integration
用于废水中化学需氧量 (COD) 测定的电化学传感探头:分子级颗粒设计、电极工程和系统集成
- 批准号:
RGPIN-2016-03620 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




