Collaborative Research: Understanding ion solvation effects in nonaqueous oxygen electroreduction reactions

合作研究:了解非水氧电还原反应中的离子溶剂化效应

基本信息

  • 批准号:
    1604898
  • 负责人:
  • 金额:
    $ 20.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Title: Collaborative Research: Understanding Ion Solvation Effects in Nonaqueous Oxygen Electroreduction ReactionsBryan D. McCloskey/ Venkatasubraman ViswanathanProposal Number: 1604927/1604898Of all battery chemistries currently being explored to power next-generation electric vehicles, metal-air (O2) couples possess some of the highest known theoretical specific energies and volumetric energy densities. In particular, the aprotic nonaqueous Li-O2 battery has recently received significant attention because of its superior specific energy. Yet many of the challenges facing Li-O2 battery development remain unsolved. One of these challenges involves understanding the link between electrolyte composition and the discharge/charge electrochemical processes. The proposed research will address the fundamental dependence of the Li-O2 electrochemistry mechanism on both cation and anion solvation, thereby providing a better understanding of how to improve the performance of high-energy nonaqueous Li-O2 and other metal-O2 batteries. If successful, Li-O2 batteries could advance and accelerate the adoption of electric vehicles for reduced emissions, improved efficiency, and domestic energy security. The PIs are committed to broad dissemination of their results. As such, they will develop online video modules to make publicly accessible the prospects of this exciting new area of energy storage. The online modules will be structured for simple incorporation into energy and electrochemical system courses, including those taught by the PIs. The PIs will also develop a broader and more engaging educational content on electrochemistry/batteries with a vision to run a massive online open course. The overall objective of the proposed research is to elucidate the effect of ion solvation on the fundamental oxygen electrochemistry in nonaqueous electrolytes, with a particular emphasis on oxygen reduction in Li+-bearing electrolytes. Recent studies have identified the importance of electrolyte composition on both the ultimate oxygen reduction product formed and the mechanism by which it forms. For example, a 2 e- oxygen reduction to form lithium peroxide, Li2O2, is found to occur in nonaqueous Li-O2 batteries, whereas a 1 e- reduction process to form sodium superoxide, NaO2, occurs in Na-O2 batteries. Furthermore, the Li-O2 discharge mechanism was recently shown to be affected by a delicate interplay between anion and solvent selection, as the Lewis acidity and basicity of both components affected the lifetime of oxygen reduction intermediates in solution. The PIs used this knowledge to improve the discharge capacity (or usable energy) of a Li-O2 battery four-fold. However, the understanding of the complex role of electrolyte constituents (ions, additives, and solvents) on electrode reactions and ion solvation is not complete. This understanding potentially has far-reaching implications in many other electrochemical systems (e.g., CO2 reduction, Li-S batteries, and other metal-air batteries). The proposed research tasks will leverage unique experimental and theoretical capabilities developed by the PIs to study Li-O2 batteries, including Differential Electrochemical Mass Spectrometry (DEMS) to quantify Coulombic efficiency of batteries employing different electrolyte compositions, and nuclear magnetic resonance spectroscopy to probe cation and anion solvation in these electrolytes. The theoretical capabilities to describe non-equilibrium charge transport, and solution and surface electrochemistry, will be based on density functional theory calculations. Through a well-developed theoretical and experimental framework, the PIs will identify novel electrolyte compositions that can trigger solution electrochemistry, thereby improving discharge capacity while maintaining chemical stability. The PIs will then experimentally link ion solvation effects in the most promising electrolyte compositions to stability and capacity enhancements.
题目:合作研究:了解非水氧电还原反应中的离子溶剂化效应提案号:1604927/ 1604888在目前正在探索的为下一代电动汽车提供动力的所有电池化学物质中,金属-空气(O2)对具有一些已知的最高理论比能和体积能量密度。近年来,非质子非水锂离子电池因其优越的比能而受到广泛关注。然而,锂氧电池发展面临的许多挑战仍未得到解决。其中一个挑战包括理解电解质组成和放电/充电电化学过程之间的联系。该研究将解决锂- o2电化学机制对正离子和阴离子溶剂化的基本依赖,从而为如何提高高能非水锂- o2和其他金属- o2电池的性能提供更好的理解。如果成功,锂- o2电池可以推动和加速电动汽车的采用,以减少排放,提高效率,提高国内能源安全。私人机构致力于广泛传播其结果。因此,他们将开发在线视频模块,让公众了解这一令人兴奋的新能源存储领域的前景。在线模块将被简单地整合到能源和电化学系统课程中,包括那些由pi教授的课程。pi还将开发更广泛、更吸引人的电化学/电池教育内容,以期开设大规模的在线公开课程。提出的研究的总体目标是阐明离子溶剂化对非水电解质中基本氧电化学的影响,特别强调含Li+电解质中的氧还原。最近的研究已经确定了电解质组成对最终氧还原产物的形成及其形成机制的重要性。例如,在非水Li-O2电池中发现了2 e-氧还原生成过氧化锂(Li2O2)的过程,而在Na-O2电池中发现了1 e-氧还原生成超氧化钠(NaO2)的过程。此外,Li-O2放电机制最近被证明受到阴离子和溶剂选择之间微妙的相互作用的影响,因为这两种成分的刘易斯酸度和碱度都会影响溶液中氧还原中间体的寿命。pi利用这些知识将锂氧电池的放电容量(或可用能量)提高了四倍。然而,对电解质成分(离子,添加剂和溶剂)在电极反应和离子溶剂化中的复杂作用的理解并不完整。这种理解可能对许多其他电化学系统(例如,二氧化碳还原,锂- s电池和其他金属-空气电池)具有深远的影响。拟议的研究任务将利用pi开发的独特实验和理论能力来研究Li-O2电池,包括差分电化学质谱(DEMS)来量化使用不同电解质成分的电池的库仑效率,以及核磁共振波谱来探测这些电解质中的阳离子和阴离子溶剂化。描述非平衡电荷输运、溶液和表面电化学的理论能力将基于密度泛函理论计算。通过完善的理论和实验框架,pi将确定能够触发溶液电化学的新型电解质成分,从而在保持化学稳定性的同时提高放电容量。然后,pi将通过实验将最有希望的电解质成分中的离子溶剂化效应与稳定性和容量增强联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Venkatasubraman Viswanathan其他文献

Venkatasubraman Viswanathan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Venkatasubraman Viswanathan', 18)}}的其他基金

I-Corps: Electric Fleet Management
I-Corps:电动车队管理
  • 批准号:
    2330126
  • 财政年份:
    2023
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
I-Corps: Electric Fleet Management
I-Corps:电动车队管理
  • 批准号:
    2423862
  • 财政年份:
    2023
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
CAREER: Engineering electrode-electrolyte interfaces through electrolyte selection for improved performance in lithium-air batteries and fuel cell electrocatalysis
职业:通过选择电解质来设计电极-电解质界面,以提高锂空气电池和燃料电池电催化的性能
  • 批准号:
    1554273
  • 财政年份:
    2016
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
  • 批准号:
    2335235
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
  • 批准号:
    2346230
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
  • 批准号:
    2314272
  • 财政年份:
    2024
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了