CAREER: Simulation-Enhanced Virtual Design Environments for Fluid Systems
职业:流体系统的仿真增强虚拟设计环境
基本信息
- 批准号:1554253
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant aims to make the design of fluid systems more intuitive, accessible, and inexpensive. Fluid systems, such as aircraft, biomedical pumps, or turbines, play a vital role in many sectors of the U.S. economy. Due to the complex physics of fluid flow, these systems are often difficult and costly to design. This presents a barrier to start-up companies seeking to develop products that involve such complex fluid flows. The complicated nature of fluid flows also poses a barrier in engineering education, where students often struggle to achieve intuition regarding fluid flows. To mitigate these barriers, this award envisions an immersive, virtual-reality design environment in which engineers can interact with aircraft or heart pumps in the same way artists interact with clay. A key requirement of this vision is the ability to provide engineers with instantaneous performance predictions as they shape their virtual designs. This award will help build the knowledge necessary for real-time prediction of complex fluid flows, thereby enabling the next generation of tools for immersive computer-aided design and engineering education.Predicting the performance of fluid systems quickly and accurately for preliminary design remains a challenge due to the nonlinearity of the governing equations and the large cost of high-fidelity simulations. Reduced-order models provide a suitable alternative approach, since they have the potential to significantly reduce computational cost with only a small reduction in accuracy. The innovation explored in this award is to create reduced-order models that achieve high accuracy for boundary quantities that engineers are typically interested in, e.g., lift and drag, rather than high accuracy for the overall flow. Specifically, the research team will investigate adjoint-based basis functions to construct reduced-order models suitable for prediction of such boundary integrals. After using the reduced-order model to find a preliminary design, a numerical optimization based on a high-fidelity model can be applied to refine the design parameters. Here, numerical error estimation and control is especially important, because an optimization algorithm may exploit numerical errors rather than physics to optimize the quantity of interest. This research will explore the use of simultaneous geometry and mesh optimization as a means of addressing error control. Finally, after optimization, an engineer may need to explore the design space in order to meet qualitative constraints or consider tradeoffs. The research team will test the hypothesis that matrix-free spectral methods can re-parameterize and approximate the design space in such a way that engineers can make real-time changes without significantly impacting optimality and feasibility.
这个教师早期职业发展(CAREER)补助金旨在使流体系统的设计更加直观,方便和廉价。 流体系统,如飞机,生物医学泵或涡轮机,在美国经济的许多部门中发挥着至关重要的作用。 由于流体流动的复杂物理特性,这些系统的设计通常是困难和昂贵的。 这对寻求开发涉及这种复杂流体流动的产品的初创公司来说是一个障碍。 流体流动的复杂性质也构成了工程教育的障碍,学生往往很难获得关于流体流动的直觉。 为了缓解这些障碍,该奖项设想了一个沉浸式的虚拟现实设计环境,在这个环境中,工程师可以与飞机或心脏泵进行交互,就像艺术家与粘土进行交互一样。 这一愿景的一个关键要求是能够为工程师提供即时的性能预测,因为他们塑造他们的虚拟设计。 该奖项将有助于建立复杂流体流动实时预测所需的知识,从而为沉浸式计算机辅助设计和工程教育提供下一代工具。由于控制方程的非线性和高保真仿真的巨大成本,快速准确地预测流体系统的性能以进行初步设计仍然是一项挑战。 降阶模型提供了一个合适的替代方法,因为它们有可能显着降低计算成本,只有一个小的精度降低。 该奖项探索的创新是创建降阶模型,以实现工程师通常感兴趣的边界量的高精度,例如,升力和阻力,而不是整体流量的高精度。 具体而言,研究小组将研究基于伴随的基函数,以构建适合预测此类边界积分的降阶模型。 在使用降阶模型找到初步设计之后,可以应用基于高保真模型的数值优化来细化设计参数。 这里,数值误差估计和控制是特别重要的,因为优化算法可以利用数值误差而不是物理来优化感兴趣的量。 本研究将探讨使用同步几何和网格优化作为解决错误控制的一种手段。 最后,优化后,工程师可能需要探索设计空间,以满足定性约束或考虑权衡。 研究团队将测试无矩阵谱方法可以重新参数化和近似设计空间的假设,以便工程师可以在不显著影响最优性和可行性的情况下进行实时更改。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hicken其他文献
Constructing stable, high-order finite-difference operators on point clouds over complex geometries
在复杂几何形状上的点云上构建稳定的高阶有限差分算子
- DOI:
10.1016/j.jcp.2025.113940 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Jason Hicken;Ge Yan;Sharanjeet Kaur - 通讯作者:
Sharanjeet Kaur
A method to regularize optimization problems governed by chaotic dynamical systems
- DOI:
10.1016/j.chaos.2024.115491 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Jason Hicken;Vignesh Ramakrishnan - 通讯作者:
Vignesh Ramakrishnan
Jason Hicken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hicken', 18)}}的其他基金
A Concept to Eliminate the Meshing Bottleneck During the Design and Analysis of Fluid Systems
流体系统设计和分析过程中消除啮合瓶颈的概念
- 批准号:
1825991 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Enabling Multidisciplinary Design Optimization: Inexact-Newton-Krylov and the Individual-Discipline-Feasible Formulation
实现多学科设计优化:不精确牛顿克雷洛夫和个别学科可行公式
- 批准号:
1332819 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Neural Network Enhanced Electromagnetics and Multiphysics Simulation Methods for RF and Microwave Reconfigurable Devices
职业:射频和微波可重构器件的神经网络增强电磁学和多物理场仿真方法
- 批准号:
2238124 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Molecular Dynamics simulation for association/dissociation of protein-ligand and protein-DNA complexes by advanced enhanced sampling technique
通过先进的增强采样技术对蛋白质-配体和蛋白质-DNA 复合物的结合/解离进行分子动力学模拟
- 批准号:
23K13077 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of simulation tools and enhanced image-guidance for optimized planning and monitoring of high intensity focused ultrasound energy delivery
开发模拟工具和增强的图像引导,以优化规划和监测高强度聚焦超声能量输送
- 批准号:
RGPIN-2018-04935 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
CRII:OAC: Machine Learning- Enhanced Multiscale Simulation of Fiber Composites
CRII:OAC:机器学习 - 纤维复合材料的增强多尺度模拟
- 批准号:
2103708 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Development of simulation tools and enhanced image-guidance for optimized planning and monitoring of high intensity focused ultrasound energy delivery
开发模拟工具和增强的图像引导,以优化规划和监测高强度聚焦超声能量输送
- 批准号:
RGPIN-2018-04935 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Full field chemical enhanced oil recovery simulation
全油田化学提高采收率模拟
- 批准号:
74236 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Feasibility Studies
Enhanced Characterisation and Simulation Methods for Thermoplastic Overmoulding - ENACT
热塑性塑料包覆成型的增强表征和模拟方法 - ENACT
- 批准号:
105799 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Small Business Research Initiative
CO2-Enhanced Gas Recovery (CO2-EGR): Multi-Scale Simulation of Rarefied Gas Flows in Porous Media
CO2 增强气体回收 (CO2-EGR):多孔介质中稀薄气体流动的多尺度模拟
- 批准号:
EP/R041938/2 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Development of simulation tools and enhanced image-guidance for optimized planning and monitoring of high intensity focused ultrasound energy delivery
开发模拟工具和增强的图像引导,以优化规划和监测高强度聚焦超声能量传输
- 批准号:
RGPIN-2018-04935 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Full field chemical enhanced recovery simulation
全油田化学强化采收率模拟
- 批准号:
830105 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Innovation Loans