A Concept to Eliminate the Meshing Bottleneck During the Design and Analysis of Fluid Systems
流体系统设计和分析过程中消除啮合瓶颈的概念
基本信息
- 批准号:1825991
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proper function of many systems vital to the United States' economy, defense, and national health depend on fluid flow (i.e., the flow of a liquid or gas). Examples of such systems include commercial and military aircraft, automobile engines, wind turbines, and heart pumps. Fluid systems are characterized by unintuitive physics, which makes them exceptionally difficult to design. This difficulty is particularly acute during the conceptual design of unconventional fluid systems, for which experimental data and engineering experience is lacking. In principle, engineers could use numerical simulations to analyze innovative fluid systems, but high-fidelity simulations have found limited use during conceptual design. Why? Flow simulations typically rely on meshes, which divide the region occupied by the fluid into many smaller volumes, and generating high-quality meshes for complex geometries remains a time-consuming, human-in-the-loop process. This research will investigate a fundamentally new approach to mitigate the meshing bottleneck and thereby improve the fluid system design process. Project outcomes will include novel algorithms and prototype implementations of the algorithms that will be made available in an online repository. The research project will study a novel immersed-boundary method and its application to design optimization. The key insight is to frame the immersed-boundary method as an inverse problem. The idea is to introduce a body force, or surface flux, interior to the geometry that acts like a control variable to impose the boundary conditions. The optimal value for this control is determined by solving a partial-differential-equation constrained inverse problem. This approach is attractive for the analysis of fluid systems during conceptual design, because the computational mesh does not need to conform to the geometry. Furthermore, unlike most immersed-boundary methods, this project's approach remains accurate and is compatible with high-order discretizations. To assess the potential of the concept, the project will investigate several critical questions: among alternative inverse-problem formulations, which one is the best? How should the problem be regularized? How do we solve the inverse problem efficiently? How robust and accurate is the concept when applied to imperfect CAD geometries? And, how can the method be used to advance shape optimization algorithms?This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对美国经济、国防和国民健康至关重要的许多系统的正常功能取决于流体流动(即,液体或气体的流动)。 这种系统的例子包括商用和军用飞机、汽车发动机、风力涡轮机和心脏泵。流体系统的特点是不直观的物理,这使得它们非常难以设计。 在缺乏实验数据和工程经验的非常规流体系统的概念设计中,这一困难尤其严重。原则上,工程师可以使用数值模拟来分析创新的流体系统,但高保真模拟在概念设计中的应用有限。为什么?为什么? 流动模拟通常依赖于网格,网格将流体所占据的区域划分为许多较小的体积,并且为复杂几何形状生成高质量网格仍然是一个耗时的人工参与过程。 这项研究将调查一个根本性的新方法,以减轻网格的瓶颈,从而改善流体系统的设计过程。项目成果将包括新的算法和算法的原型实现,这些算法将在一个在线存储库中提供。 本研究计画将探讨一种新的浸入边界法及其在设计最佳化上的应用。 关键的见解是框架的浸入边界法作为一个反问题。 这个想法是引入一个体积力,或表面通量,内部的几何形状,就像一个控制变量施加边界条件。 该控制的最优值是通过求解偏微分方程约束反问题来确定的。 这种方法是有吸引力的概念设计过程中的流体系统的分析,因为计算网格不需要符合的几何形状。 此外,与大多数浸入边界方法不同,该项目的方法保持准确,并与高阶离散化兼容。 为了评估这一概念的潜力,该项目将调查几个关键问题:在各种反问题公式中,哪一个是最好的? 问题应该如何规范化? 如何有效地解决逆问题? 当应用于不完美的CAD几何形状时,该概念的稳健性和准确性如何? 而且,如何使用该方法来推进形状优化算法?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Explicit Level-Set Formula to Approximate Geometries
近似几何的显式水平集公式
- DOI:10.2514/6.2022-1862
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hicken, Jason E.;Kaur, Sharanjeet
- 通讯作者:Kaur, Sharanjeet
An inverse problem formulation of the immersed‐boundary method
浸没边界法的反问题表述
- DOI:10.1002/fld.4816
- 发表时间:2020
- 期刊:
- 影响因子:1.8
- 作者:Yan, Jianfeng;Hicken, Jason E.
- 通讯作者:Hicken, Jason E.
Immersed Boundary Method as an Inverse Problem
作为反问题的浸入边界法
- DOI:10.2514/6.2018-4162
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Yan, Jianfeng;Hicken, Jason E.
- 通讯作者:Hicken, Jason E.
High-order discontinuous Galerkin Difference cut-cell discretization
- DOI:10.2514/6.2021-1939
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Sharanjeet Kaur;Jason E. Hicken
- 通讯作者:Sharanjeet Kaur;Jason E. Hicken
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Hicken其他文献
Constructing stable, high-order finite-difference operators on point clouds over complex geometries
在复杂几何形状上的点云上构建稳定的高阶有限差分算子
- DOI:
10.1016/j.jcp.2025.113940 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Jason Hicken;Ge Yan;Sharanjeet Kaur - 通讯作者:
Sharanjeet Kaur
A method to regularize optimization problems governed by chaotic dynamical systems
- DOI:
10.1016/j.chaos.2024.115491 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Jason Hicken;Vignesh Ramakrishnan - 通讯作者:
Vignesh Ramakrishnan
Jason Hicken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Hicken', 18)}}的其他基金
CAREER: Simulation-Enhanced Virtual Design Environments for Fluid Systems
职业:流体系统的仿真增强虚拟设计环境
- 批准号:
1554253 - 财政年份:2016
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Enabling Multidisciplinary Design Optimization: Inexact-Newton-Krylov and the Individual-Discipline-Feasible Formulation
实现多学科设计优化:不精确牛顿克雷洛夫和个别学科可行公式
- 批准号:
1332819 - 财政年份:2013
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
相似海外基金
Exploration of T- and B-cell receptors to eliminate the foreign body reaction from synthetic polymeric scaffolds
探索 T 细胞和 B 细胞受体以消除合成聚合物支架的异物反应
- 批准号:
24K19917 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
J-RISE: Relevant Implementation Strategies to Eliminate the social and structural barriers to HIV services among Justice-involved Black men who have sex with men
J-RISE:消除男男性行为黑人中艾滋病毒服务的社会和结构性障碍的相关实施策略
- 批准号:
10744578 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Conference: Developing Effective Tools for Leading Sustainable Campus Culture Change in Hispanic-Serving Institutions to Eliminate Equity Gaps in STEM
会议:开发有效工具,引导拉美裔服务机构可持续校园文化变革,消除 STEM 领域的公平差距
- 批准号:
2307031 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Development of an Oscillated Insertion tool to Eliminate Surgically Induced Neurodegeneration for Optical Neuroimaging of Cognitive Aging and Dementia
开发振荡插入工具以消除手术引起的神经变性,用于认知衰老和痴呆的光学神经成像
- 批准号:
10792064 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
I-Corps: Catalytic membrane to eliminate organic pollutants in industrial wastewater
I-Corps:消除工业废水中有机污染物的催化膜
- 批准号:
2330630 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Targeting FASN to eliminate metastatic breast cancer in the brain
靶向 FASN 消除脑部转移性乳腺癌
- 批准号:
10721671 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Georgia Consortium to Eliminate Cervical Cancer in Women Living with HIV (GaCECC-WLWH)
佐治亚州消除艾滋病毒女性宫颈癌联盟 (GaCECC-WLWH)
- 批准号:
10757203 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Wahanu: Helping operators of large fuel storage tanks eliminate fuel contamination within the supply chain, through the use of an in-tank cyclonic separator, sensors and IoT devices, to improve engine fuel efficiency and reduce emissions
Wahanu:通过使用罐内旋风分离器、传感器和物联网设备,帮助大型燃料储罐运营商消除供应链内的燃料污染,从而提高发动机燃油效率并减少排放
- 批准号:
10047152 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Collaborative R&D
CAREER: Leveraging Everyday Usage of Programs to Eliminate Bugs
职业:利用程序的日常使用来消除错误
- 批准号:
2333885 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Continuing Grant
Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers
合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术
- 批准号:
2247454 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant














{{item.name}}会员




