CAREER: Quantum-mechanical methods for electronic excited states in complex systems
职业:复杂系统中电子激发态的量子力学方法
基本信息
- 批准号:1554354
- 负责人:
- 金额:$ 47.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Professor Eugene DePrince of Florida State University is funded by the Chemical Theory, Models, and Computational Methods program of the Chemistry Division to develop new theories and computer algorithms to aid in the description of the electronic structure of complex molecules and materials. Dr. DePrince and his group are developing techniques that describe a system with many electrons using an approach (two-electron reduced-density matrix: 2-RDM) that reduces the problem to two electrons, rather than the more familiar and complicated many-electron techniques. Because the 2-RDM approach is more compact than the many-electron wave function, these methods enable large computations on complex systems that are not possible using conventional approaches. The theories and algorithms being developed facilitate the discovery and characterization of novel molecules and materials relevant energy conversion, catalysis, and advanced energy storage technologies. Professor DePrince is also developing Chemical Physics courses, a lecture series, and online educational content with the goal of establishing a Chemical Physics PhD track in the Department of Chemistry and Biochemistry at Florida State University.The project aims to develop a theoretical and computational framework for the description of electronically excited states in complex systems. Here, the term complex refers to systems that fall into one of two categories: (i) molecules whose electronic wave functions cannot be described qualitatively by a single electronic configuration (i.e. strongly correlated systems) or (ii) molecules embedded in extreme environments, such as those in the vicinity of a plasmonic nanoparticle, where intense external electric fields can significantly perturb the electron density for the molecule. For the former category, frequency- and time-domain methods are being developed to extract excited-state information from variational two-electron reduced-density matrix (2-RDM)-driven complete active space self-consistent field computations. For the latter category, the investigator and his group are developing fully-quantum mechanical approaches that simulate plasmon-molecule interactions in the time domain. Because the plasmon is modeled in a quantum-mechanical way, such an approach captures quantum-mechanical effects, such as entanglement and coherences between plasmon excitations. Professor DePrince places the codes developed as part of this research effort in the public domain in either free or commercial electronic structure packages. Making these codes available to the public facilitates the discovery of novel materials and the advancement of the numerical methods developed throughout the project.
州立大学佛罗里达的尤金·德普林斯教授由化学系的化学理论、模型和计算方法项目资助,开发新的理论和计算机算法,以帮助描述复杂分子和材料的电子结构。 DePrince博士和他的团队正在开发一种技术,该技术使用一种方法(双电子约化密度矩阵:2-RDM)来描述具有许多电子的系统,该方法将问题减少到两个电子,而不是更熟悉和复杂的多电子技术。 由于2-RDM方法比多电子波函数更紧凑,因此这些方法能够对复杂系统进行大量计算,而这是使用传统方法无法实现的。 正在开发的理论和算法促进了与能量转换、催化和先进储能技术相关的新型分子和材料的发现和表征。DePrince教授还在开发化学物理课程、系列讲座和在线教育内容,目标是在佛罗里达州立大学化学和生物化学系建立化学物理博士课程。该项目旨在开发一个理论和计算框架,用于描述复杂系统中的电子激发态。 这里,术语复合物是指落入两类之一的系统:(i)其电子波函数不能由单个电子配置定性描述的分子(即强相关系统)或(ii)嵌入极端环境中的分子,例如在等离子体纳米颗粒附近的分子,其中强烈的外部电场可以显著地扰动分子的电子密度。对于前一类,频域和时域的方法正在开发中提取激发态的信息,从变的双电子约化密度矩阵(2-RDM)驱动的完整的活性空间自洽场计算。 对于后一类,研究人员和他的团队正在开发全量子力学方法,在时域中模拟等离子体分子相互作用。由于等离子体是以量子力学的方式建模的,因此这种方法捕获了量子力学效应,例如等离子体激发之间的纠缠和相干。DePrince教授将作为这项研究工作的一部分而开发的代码以免费或商业电子结构包的形式置于公共领域。向公众提供这些代码有助于发现新材料和推进整个项目开发的数值方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Albert DePrince其他文献
Albert DePrince的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Albert DePrince', 18)}}的其他基金
Collaborative Proposal: Frameworks: Sustainable Open-Source Quantum Dynamics and Spectroscopy Software
合作提案:框架:可持续开源量子动力学和光谱软件
- 批准号:
2103705 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Standard Grant
Many-body quantum chemistry on graphics processing units
图形处理单元上的多体量子化学
- 批准号:
1137288 - 财政年份:2011
- 资助金额:
$ 47.34万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 47.34万 - 项目类别:
Standard Grant
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
Next generation free energy perturbation (FEP) calculations--enabled by a novel integration of quantum mechanics (QM) with molecular dynamics allowing a large QM region and no sampling compromises
下一代自由能微扰 (FEP) 计算——通过量子力学 (QM) 与分子动力学的新颖集成实现,允许较大的 QM 区域且不会影响采样
- 批准号:
10698836 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
21BBSRC-NSF/BIO - Evolving quantum mechanical tunnelling in enzymes
21BBSRC-NSF/BIO - 酶中不断发展的量子力学隧道
- 批准号:
BB/X000974/1 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
Research Grant
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 47.34万 - 项目类别:
Multi-Scale Framework for Quantum Mechanical Simulations of Organic Electronics
有机电子量子力学模拟的多尺度框架
- 批准号:
EP/P033253/2 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Fellowship
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Standard Grant
UKRI/BBSRC-NSF/BIO: Evolving quantum mechanical tunnelling in enzymes
UKRI/BBSRC-NSF/BIO:酶中量子力学隧道效应的演变
- 批准号:
2244981 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Standard Grant
Microwave to optical quantum transducer using mechanical resonators
使用机械谐振器的微波到光学量子传感器
- 批准号:
576636-2022 - 财政年份:2022
- 资助金额:
$ 47.34万 - 项目类别:
Alliance Grants














{{item.name}}会员




