Conference: Topological and Quantitative Aspects of Symplectic Manifolds; Columbia University and Barnard College, March 17-20, 2016
会议:辛流形的拓扑和定量方面;
基本信息
- 批准号:1554820
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this grant is to support roughly 27 junior participants, primarily graduate students and postdoctoral fellows, at the conference "Topological and quantitative aspects of symplectic manifolds" to be held at Columbia University and Barnard College on March 17-20, 2016. The conference will be organized by Mohammed Abouzaid, Ailsa Keating, Robert Lipshitz, Walter Neumann, and Lisa Traynor. The conference will feature 16-20 talks and roughly 80 participants.Symplectic geometry and contact geometry are the abstract setting of classical mechanics. Symplectic geometry was originally developed to study the Hamiltonian formulation of classical mechanics, with a particular focus on celestial mechanics. More recently, it has turned out that symplectic and contact geometry are key to fundamental questions in theoretical high energy physics, as a key component in string theory and with close relations to gauge theory. Roughly speaking, a symplectic manifold is a smooth space in which there is a well-defined notion of area - but not necessarily a well-defined notion of distance. One key question is how to tell if two symplectic manifolds are the same, and to list all symplectic manifolds with certain properties. Another important topic is the notion of size in symplectic manifolds, given that there is no intrinsic notion of distance. This problem is particularly subtle - it turns out, for instance, that an infinite cylinder may not be symplectically bigger than a finite one - and again is reflected in strange theoretical phenomena in physics. Another important topic in symplectic geometry - and most of mathematics - is symmetry: what symmetries can symplectic spaces have? Is it possible to classify all highly-symmetric symplectic spaces? A last theme is using smooth symplectic spaces to study singular spaces: smooth spaces are easier to analyze, but understanding what properties of singularities they reflect is subtle. This conference will bring together roughly 80 researchers on these topics, with a particular emphasis on recent developments and work by younger researchers, to exchange ideas and results on these basic research topics. The ultimate goal, naturally, is to promote the progress of science. A secondary goal is to highlight the many contributions of women to the field, to provide mentoring and support for women researchers who are just getting started and so promote diversity among mathematics researchers.The conference web page, with information about speakers and registration, ishttp://math.columbia.edu/mcduff70
该补助金的目的是支持大约27初级参与者,主要是研究生和博士后研究员,在会议上“辛流形的拓扑和定量方面”将于2016年3月17日至20日在哥伦比亚大学和巴纳德学院举行。会议将由穆罕默德·阿布扎伊德、艾尔莎·基廷、罗伯特·利普希茨、沃尔特·诺依曼和丽莎·特雷诺组织。会议将有16-20场演讲和大约80名与会者。辛几何和接触几何是经典力学的抽象背景。辛几何最初是为了研究经典力学的哈密顿公式而发展起来的,特别关注天体力学。最近,人们发现辛几何和接触几何是理论高能物理中基本问题的关键,是弦理论的关键组成部分,与规范理论有着密切的关系。粗略地说,辛流形是一个光滑的空间,其中有一个明确定义的面积概念-但不一定是一个明确定义的距离概念。一个关键问题是如何判断两个辛流形是否相同,并列出所有具有某些性质的辛流形。另一个重要的主题是辛流形的大小概念,因为没有距离的内在概念。这个问题特别微妙--例如,一个无限长的圆柱体可能并不比一个有限长的圆柱体在辛意义上更大--这一问题又一次反映在物理学中奇怪的理论现象中。辛几何和大多数数学中的另一个重要话题是对称性:辛空间可以有什么对称性?是否有可能对所有高度对称的辛空间进行分类?最后一个主题是使用光滑辛空间来研究奇异空间:光滑空间更容易分析,但理解它们反映的奇异性是微妙的。本次会议将汇集大约80名研究这些主题的研究人员,特别强调年轻研究人员的最新发展和工作,交流有关这些基础研究主题的想法和成果。当然,最终目标是促进科学的进步。第二个目标是突出女性对该领域的许多贡献,为刚刚起步的女性研究人员提供指导和支持,从而促进数学研究人员的多样性。math.columbia.edu/mcduff70
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammed Abouzaid其他文献
Gromov-Witten Invariants in Complex and Morava-Local K-Theories
复形和莫拉瓦局部 K 理论中的格罗莫夫 - 温特不变量
- DOI:
10.1007/s00039-024-00697-4 - 发表时间:
2024-10-07 - 期刊:
- 影响因子:2.500
- 作者:
Mohammed Abouzaid;Mark McLean;Ivan Smith - 通讯作者:
Ivan Smith
Framed emE/emsub2/sub structures in Floer theory
在 Floer 理论中构建的 emE/emsub2/sub 结构
- DOI:
10.1016/j.aim.2024.109755 - 发表时间:
2024-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Mohammed Abouzaid;Yoel Groman;Umut Varolgunes - 通讯作者:
Umut Varolgunes
Framed E2 structures in Floer theory
Florer 理论中的框架 E2 结构
- DOI:
10.1016/j.aim.2024.109755 - 发表时间:
2024 - 期刊:
- 影响因子:1.7
- 作者:
Mohammed Abouzaid;Yoel Groman;Umut Varolgunes - 通讯作者:
Umut Varolgunes
Mohammed Abouzaid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammed Abouzaid', 18)}}的其他基金
FRG: Collaborative Research: Floer homotopy theory
FRG:合作研究:弗洛尔同伦理论
- 批准号:
1564172 - 财政年份:2016
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Algebraic structures in Floer theory
弗洛尔理论中的代数结构
- 批准号:
1308179 - 财政年份:2013
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
相似海外基金
Topological semiconductors resonate with an elusive form of radiation
拓扑半导体与难以捉摸的辐射形式产生共振
- 批准号:
DP240101062 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Projects
Topological phonons in solids
固体中的拓扑声子
- 批准号:
DE240100627 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Early Career Researcher Award
Observing, Creating and Addressing Topological Spin Textures in a Monolayer XY Magnet
观察、创建和解决单层 XY 磁体中的拓扑自旋纹理
- 批准号:
EP/Y023250/1 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Research Grant
CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
- 批准号:
2348238 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Fellowship Award
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
- 批准号:
2402555 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
Electronic, transport and topological properties of frustrated magnets
受挫磁体的电子、输运和拓扑特性
- 批准号:
2403804 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Standard Grant
CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
- 批准号:
2339309 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Continuing Grant
Engineered topological nanostructures – a new frontier in materials design
工程拓扑纳米结构——材料设计的新前沿
- 批准号:
DP240100238 - 财政年份:2024
- 资助金额:
$ 2.43万 - 项目类别:
Discovery Projects