CAREER: Developing Advanced Morphological Control of Nanowires to Encode Photonic and Optoelectronic Functionality

职业:开发纳米线的先进形态控制以编码光子和光电功能

基本信息

  • 批准号:
    1555001
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: Semiconductor nanowires have been widely explored for their potential electronic and photonic applications, and the properties of the wires are largely dictated by the ability to modulate their composition during synthesis. This project aims to explore chemistry-based processes to encode complex cylindrical silicon wires and to understand the incorporation of phosphorus, boron, and nitrogen dopant atoms in silicon nanowires during their growth. The effect of wire synthesis conditions on the concentration and spatial profiles of these dopant atoms is studied, and the potential for atomically-abrupt interfaces is evaluated. In addition, the influence of the dopant atoms on the optical properties and shape of the wires is examined, targeting optimized growth of spiraling nanowires and controllable creation of luminescent centers within the wires. The project trains undergraduate and graduate students in topics that bridge the interface between chemistry, physics, and engineering - providing breadth of experience in nanomaterials synthesis, microfabrication, optoelectronic measurements, and modeling. Various programs and demonstrations in elementary schools and local libraries, annual public science expositions and summer research for high-school students enable broad dissemination of the scientific concepts. Technical Description: Semiconductor nanowires are often synthesized by metal-catalyzed growth using vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) growth processes. This project aims to develop a combined VLS-VSS growth method to encode phosphorus, boron, and nitrogen dopant atoms in silicon nanowires with single or sub-nanometer spatial resolution. The incorporation of dopants is used to modulate the optical properties and morphology of the nanowires. For instance, co-doping is explored as a novel method to create chiral wires, and the chiro-optical response of these structures is studied. In addition, the incorporation of nitrogen is used to introduce defect states with luminescent characteristics. Modulation of boron and phosphorus is employed to create deep-subwavelength photonic crystal cavities integrated with p-n junction photodetectors that exhibit wavelength-selective detection. These efforts expand the set of bottom-up synthetic methods that can be used to encode photonic and optoelectronic functionality in nanowires.
非技术描述:半导体纳米线因其潜在的电子和光子应用而被广泛探索,并且纳米线的特性很大程度上取决于合成过程中调节其成分的能力。该项目旨在探索基于化学的工艺来编码复杂的圆柱形硅线,并了解磷、硼和氮掺杂剂原子在硅纳米线生长过程中的结合情况。研究了线合成条件对这些掺杂剂原子的浓度和空间分布的影响,并评估了原子突变界面的潜力。此外,还检查了掺杂剂原子对线的光学性质和形状的影响,目标是螺旋纳米线的优化生长和线内发光中心的可控创建。该项目对本科生和研究生进行化学、物理和工程之间桥梁的主题培训,提供纳米材料合成、微加工、光电测量和建模方面的丰富经验。小学和当地图书馆的各种项目和演示、年度公共科学博览会和高中生暑期研究使科学概念得以广泛传播。技术描述:半导体纳米线通常通过金属催化生长,采用气-液-固 (VLS) 和气-固-固 (VSS) 生长工艺来合成。该项目旨在开发一种组合的 VLS-VSS 生长方法,以单纳米或亚纳米空间分辨率编码硅纳米线中的磷、硼和氮掺杂原子。掺杂剂的掺入用于调节纳米线的光学性质和形态。例如,共掺杂被探索作为一种创建手性线的新方法,并研究了这些结构的手性光学响应。此外,氮的掺入用于引入具有发光特性的缺陷态。采用硼和磷的调制来创建与具有波长选择性检测功能的 p-n 结光电探测器集成的深亚波长光子晶体腔。这些努力扩展了一系列自下而上的合成方法,可用于编码纳米线中的光子和光电功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Cahoon其他文献

James Cahoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Cahoon', 18)}}的其他基金

Ratcheting Electrons with Silicon Geometric Diodes for Quasi-ballistic Terahertz Rectennas
用于准弹道太赫兹整流天线的硅几何二极管棘轮电子
  • 批准号:
    2201292
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Thermodynamics and Kinetics of Hybrid Perovskite Amino-Deliquescence and Efflorescence
杂化钙钛矿氨基潮解和风化的热力学和动力学
  • 批准号:
    2102469
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
  • 批准号:
    2121643
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
  • 批准号:
    2050764
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Quintuple P-N Junction Nanowires for Wireless Water Splitting in Particle Suspension Reactors
用于颗粒悬浮反应器中无线水分解的五重 P-N 结纳米线
  • 批准号:
    1914711
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Visualizing Charge Carrier Dynamics in Transition Metal Dichalcogenide Nanoflakes Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化过渡金属二硫属化物纳米片中的载流子动力学
  • 批准号:
    1764228
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Visualizing Charge Carrier Dynamics in Semiconductor Nanowires Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化半导体纳米线中的载流子动力学
  • 批准号:
    1464776
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
High-Resolution Morphological Control of Silicon Nanowires for Bottom-Up Photonics and Plasmonics
用于自下而上光子学和等离子体激元学的硅纳米线的高分辨率形态控制
  • 批准号:
    1308695
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant

相似海外基金

Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Conference: Developing Skills for Advanced Careers in Biology for NSF Postdoctoral Fellows in the PRFB Broadening Participation 2022 Cohort
会议:为 PRFB 扩大参与 2022 年队列中的 NSF 博士后研究员培养生物学高级职业技能
  • 批准号:
    2233867
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Developing advanced diffusion MRI for early detection of Alzheimer's disease
开发先进的扩散磁共振成像技术以早期检测阿尔茨海默病
  • 批准号:
    10740034
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
Developing advanced potassium-sulfur batteries for scalable energy storage
开发先进的钾硫电池用于可扩展的储能
  • 批准号:
    DE230101011
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
developing and validating advanced Bayesian optimization algorithms
开发和验证先进的贝叶斯优化算法
  • 批准号:
    2885563
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Time-Temperature Transformation Phase Diagrams for Developing Advanced Glass Ceramic Nuclear Waste-forms
开发先进玻璃陶瓷核废料形式的时间-温度转变相图
  • 批准号:
    2889462
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Developing PHA-based biomaterials for pulmonary drug delivery on advanced 3D lung/immune cell models (Industry Project) KIRKSTALL
在先进的 3D 肺/免疫细胞模型上开发用于肺部药物输送的基于 PHA 的生物材料(行业项目)KIRKSTALL
  • 批准号:
    2891072
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Working title: Developing advanced analysis methods for the characterisation of microplastics in wastewater streams
工作标题:开发先进的分析方法来表征废水流中的微塑料
  • 批准号:
    2888828
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Collaborative Research: Developing Advanced Magnesium Electrolytes Toward Low Cost, High Energy Density Mg Batteries
合作研究:开发先进镁电解质以实现低成本、高能量密度镁电池
  • 批准号:
    2211825
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了