Visualizing Charge Carrier Dynamics in Transition Metal Dichalcogenide Nanoflakes Using Femtosecond Pump-Probe Microscopy

使用飞秒泵浦探针显微镜可视化过渡金属二硫属化物纳米片中的载流子动力学

基本信息

  • 批准号:
    1764228
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical description: Semiconductor nanostructures are playing an ever-increasing role in technologies that range from solar energy conversion to light emitting diodes. These nanostructures are small crystals, perhaps 1/1000 the diameter of a human hair, and come in a variety of shapes, including small particles, long flexible wires, or thin sheets. They are not perfect crystals, however. Atoms at the edges and surfaces act differently from those located in the interior. In addition, their small dimensions increase their flexibility, enabling wires to bend, and sheets to buckle and fold, which in turn changes their properties. Nanostructure functionality is oftentimes dominated by these imperfections, yet it is difficult to disentangle the influence of specific defect structures on material behavior. This project is addressing this challenge by developing microscopy methods that can image the movement of electrons in individual nanostructures on short time scales, and with high spatial resolution. These methods are then used to explore the spatial variation in electronic dynamics across semiconductor nanostructures that are only a few atomic layers thick. The project's discoveries could have broad implications for emerging technologies ranging from solar energy conversion and catalysis to quantum information systems. The research also provides training opportunities for graduate and undergraduate students, and the project participants are working with college science majors from underrepresented backgrounds to develop skills in scientific communication. Technical description: The project is advancing pump-probe microscopy methods and using them to explore how the electronic relaxation dynamics and charge carrier transport vary spatially across semiconductor nanoflakes. The nanoflakes are a few microns across and consist of 3-30 transition metal dichalcogenide layers (like sheets of paper) held together by weak van der Waals forces. Individual nanoflakes are excited with a femtosecond laser pulse that is focused to a diffraction limited spot by a microscope objective, promoting electrons from the valence band to the conduction band in a localized region of the structure. The excited electron population is then probed by a second focused laser pulse that is delayed in time. The probe pulse ejects electrons from the structure through a multiphoton absorption process, and their momentum is measured using velocity-map imaging photoelectron spectroscopy. The momentum distribution of the ejected electrons provides a direct window through which the energetic relaxation can be monitored. Experiments performed at different locations in the nanoflake (e.g. edge vs. center) show how different structural features affect the charge carrier relaxation and recombination. The microscope can also excite the nanoflake in one location, and probe it in another, enabling direct visualization of the electrons as they move through the structure. The microscopy tools developed by the research activities are broadly applicable to a wide range of the nanomaterials, and the students are gaining experience in the construction of sophisticated instrumentation. The graduate and undergraduate students are also working with entering freshmen in the University of North Carolina Chancellor's Science Scholars Program to explore the importance and challenges of explaining complex scientific discoveries to broad audiences through the development of short videos that highlight the project's research results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:半导体纳米结构在从太阳能转换到发光二极管范围内的技术中起着不断增长的作用。这些纳米结构是小晶体,也许是人毛直径的1/1000,并具有多种形状,包括小颗粒,长柔性线或薄床单。但是,它们不是完美的晶体。边缘和表面的原子与内部的原子作用不同。此外,它们的小尺寸提高了其柔韧性,使电线弯曲,并弯曲和折叠,从而改变其性质。 纳米结构功能通常由这些缺陷主导,但是很难解散特定缺陷结构对材料行为的影响。该项目通过开发显微镜方法来应对这一挑战,该方法可以在短时间尺度和高空间分辨率上对单个纳米结构中电子的运动进行图像。然后,这些方法用于探索仅少数原子层厚的半导体纳米结构之间电子动力学的空间变化。该项目的发现可能对从太阳能转换和催化到量子信息系统的新兴技术具有广泛的影响。该研究还为研究生和本科生提供了培训机会,项目参与者正在与代表性不足的背景的大学科学专业的专业人士合作,以发展科学沟通技巧。 技术描述:该项目正在推进泵探针显微镜方法,并使用它们来探索电子松弛动力学和电荷载体如何在半导体纳米板上空间变化。纳米片遍布几微米,由3-30个过渡金属二分法层(如纸的纸)组成,由弱的范德华力固定在一起。 单个纳米片是用飞秒激光脉冲激发的,该激光脉冲将通过显微镜物镜聚焦到衍射有限点上,从而促进了从价带到结构局部区域的传导带的电子。然后,通过延迟时间延迟的第二个聚焦激光脉冲探测激发的电子种群。探针脉冲通过多光子吸收过程从结构中弹出电子,并使用速度-MAP光电子光谱法测量它们的动量。弹出电子的动量分布提供了一个直接的窗口,可以通过该窗口监测能量弛豫。在纳米叶片(例如边缘与中心)不同位置进行的实验表明,不同的结构特征如何影响电荷载体弛豫和重组。显微镜还可以在一个位置激发纳米片,并在另一个位置进行探测,从而在电子中直接可视化它们穿过结构。 研究活动开发的显微镜工具广泛适用于广泛的纳米材料,并且学生在建设复杂仪器方面获得了经验。毕业生和本科生也正在与北卡罗来纳大学总理科学学者计划的新生一起探索通过发展项目的研究成果来探讨广泛的观众对广泛的观众的重要性和挑战的重要性和挑战,从而强调了该项目的研究结果。这一奖项反映了NSF的法定宣称和审查的范围,这是通过评估范围的范围,这是通过评估的范围来表现的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of Phonon Propagation in Germanium Nanowires Using Femtosecond Pump–Probe Microscopy
使用飞秒泵观察锗纳米线中的声子传播 - 探针显微镜
  • DOI:
    10.1021/acsphotonics.8b01736
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Van Goethem, Erika M.;Pinion, Christopher W.;Cating, Emma E.;Cahoon, James F.;Papanikolas, John M.
  • 通讯作者:
    Papanikolas, John M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Cahoon其他文献

James Cahoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Cahoon', 18)}}的其他基金

Ratcheting Electrons with Silicon Geometric Diodes for Quasi-ballistic Terahertz Rectennas
用于准弹道太赫兹整流天线的硅几何二极管棘轮电子
  • 批准号:
    2201292
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Thermodynamics and Kinetics of Hybrid Perovskite Amino-Deliquescence and Efflorescence
杂化钙钛矿氨基潮解和风化的热力学和动力学
  • 批准号:
    2102469
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
  • 批准号:
    2121643
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
  • 批准号:
    2050764
  • 财政年份:
    2021
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Quintuple P-N Junction Nanowires for Wireless Water Splitting in Particle Suspension Reactors
用于颗粒悬浮反应器中无线水分解的五重 P-N 结纳米线
  • 批准号:
    1914711
  • 财政年份:
    2019
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
CAREER: Developing Advanced Morphological Control of Nanowires to Encode Photonic and Optoelectronic Functionality
职业:开发纳米线的先进形态控制以编码光子和光电功能
  • 批准号:
    1555001
  • 财政年份:
    2016
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Visualizing Charge Carrier Dynamics in Semiconductor Nanowires Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化半导体纳米线中的载流子动力学
  • 批准号:
    1464776
  • 财政年份:
    2015
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
High-Resolution Morphological Control of Silicon Nanowires for Bottom-Up Photonics and Plasmonics
用于自下而上光子学和等离子体激元学的硅纳米线的高分辨率形态控制
  • 批准号:
    1308695
  • 财政年份:
    2013
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant

相似国自然基金

城市路网考虑用户异质性的宏微观一体化复杂动态建模及多目标拥堵收费
  • 批准号:
    72301012
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于信息呈现与收费模式的平台治理研究
  • 批准号:
    72271217
  • 批准年份:
    2022
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于活动方法的自动驾驶通勤建模与拥堵收费问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
    82271900
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
  • 批准号:
    2316827
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Dynamics and mechanism of sodium-dependent carboxylate transporters
钠依赖性羧酸转运蛋白的动力学和机制
  • 批准号:
    10577283
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
  • 批准号:
    2324943
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Standard Grant
Determining the role of retromer and P4-ATPase interactions in cellular functions
确定逆转录酶和 P4-ATP 酶相互作用在细胞功能中的作用
  • 批准号:
    10677963
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
Structure meets function for OATP1B1, a transporter involved in the uptake of endogenous and xenobiotic materials and drugs
OATP1B1 的结构与功能相结合,OATP1B1 是一种参与内源性和外源性物质和药物摄取的转运蛋白
  • 批准号:
    10638284
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了