Visualizing Charge Carrier Dynamics in Transition Metal Dichalcogenide Nanoflakes Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化过渡金属二硫属化物纳米片中的载流子动力学
基本信息
- 批准号:1764228
- 负责人:
- 金额:$ 54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical description: Semiconductor nanostructures are playing an ever-increasing role in technologies that range from solar energy conversion to light emitting diodes. These nanostructures are small crystals, perhaps 1/1000 the diameter of a human hair, and come in a variety of shapes, including small particles, long flexible wires, or thin sheets. They are not perfect crystals, however. Atoms at the edges and surfaces act differently from those located in the interior. In addition, their small dimensions increase their flexibility, enabling wires to bend, and sheets to buckle and fold, which in turn changes their properties. Nanostructure functionality is oftentimes dominated by these imperfections, yet it is difficult to disentangle the influence of specific defect structures on material behavior. This project is addressing this challenge by developing microscopy methods that can image the movement of electrons in individual nanostructures on short time scales, and with high spatial resolution. These methods are then used to explore the spatial variation in electronic dynamics across semiconductor nanostructures that are only a few atomic layers thick. The project's discoveries could have broad implications for emerging technologies ranging from solar energy conversion and catalysis to quantum information systems. The research also provides training opportunities for graduate and undergraduate students, and the project participants are working with college science majors from underrepresented backgrounds to develop skills in scientific communication. Technical description: The project is advancing pump-probe microscopy methods and using them to explore how the electronic relaxation dynamics and charge carrier transport vary spatially across semiconductor nanoflakes. The nanoflakes are a few microns across and consist of 3-30 transition metal dichalcogenide layers (like sheets of paper) held together by weak van der Waals forces. Individual nanoflakes are excited with a femtosecond laser pulse that is focused to a diffraction limited spot by a microscope objective, promoting electrons from the valence band to the conduction band in a localized region of the structure. The excited electron population is then probed by a second focused laser pulse that is delayed in time. The probe pulse ejects electrons from the structure through a multiphoton absorption process, and their momentum is measured using velocity-map imaging photoelectron spectroscopy. The momentum distribution of the ejected electrons provides a direct window through which the energetic relaxation can be monitored. Experiments performed at different locations in the nanoflake (e.g. edge vs. center) show how different structural features affect the charge carrier relaxation and recombination. The microscope can also excite the nanoflake in one location, and probe it in another, enabling direct visualization of the electrons as they move through the structure. The microscopy tools developed by the research activities are broadly applicable to a wide range of the nanomaterials, and the students are gaining experience in the construction of sophisticated instrumentation. The graduate and undergraduate students are also working with entering freshmen in the University of North Carolina Chancellor's Science Scholars Program to explore the importance and challenges of explaining complex scientific discoveries to broad audiences through the development of short videos that highlight the project's research results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:半导体纳米结构在从太阳能转换到发光二极管的技术中发挥着越来越重要的作用。这些纳米结构是小晶体,直径约为人类头发的千分之一,形状各异,包括小颗粒、长柔性线或薄片状。然而,它们并不是完美的晶体。边缘和表面的原子与内部的原子的行为不同。此外,它们的小尺寸增加了它们的灵活性,使电线弯曲,薄片弯曲和折叠,这反过来又改变了它们的性能。纳米结构的功能通常由这些缺陷主导,但很难理清特定缺陷结构对材料行为的影响。该项目通过开发显微镜方法来解决这一挑战,该方法可以在短时间尺度和高空间分辨率下对单个纳米结构中的电子运动进行成像。这些方法随后被用于探索只有几个原子层厚的半导体纳米结构中电子动力学的空间变化。该项目的发现可能会对从太阳能转换和催化到量子信息系统等新兴技术产生广泛影响。该研究还为研究生和本科生提供了培训机会,项目参与者正在与来自代表性不足的背景的大学科学专业的学生合作,以培养科学传播的技能。技术描述:该项目正在推进泵探针显微镜方法,并使用它们来探索电子弛豫动力学和电荷载流子输运在半导体纳米片上的空间变化。纳米薄片的直径只有几微米,由3-30个过渡金属二硫化物层(像纸张一样)通过弱范德华力粘合在一起。单个纳米薄片用飞秒激光脉冲激发,该脉冲通过显微镜物镜聚焦到衍射极限点,在结构的局部区域将电子从价带促进到导带。被激发的电子居群随后被第二个延迟聚焦的激光脉冲探测。探针脉冲通过多光子吸收过程从结构中射出电子,并使用速度图成像光电子能谱测量其动量。抛射电子的动量分布提供了一个直接的窗口,通过它可以监测能量松弛。在纳米薄片的不同位置(例如边缘和中心)进行的实验表明,不同的结构特征如何影响载流子的弛豫和重组。显微镜还可以在一个位置激发纳米片,并在另一个位置探测它,从而可以直接看到电子在结构中的移动。通过研究活动开发的显微镜工具广泛适用于各种纳米材料,学生们在构建复杂仪器方面获得了经验。研究生和本科生还与北卡罗来纳大学校长科学学者计划的新生合作,通过开发突出该项目的研究成果的短视频,探索向广大观众解释复杂科学发现的重要性和挑战。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of Phonon Propagation in Germanium Nanowires Using Femtosecond Pump–Probe Microscopy
使用飞秒泵观察锗纳米线中的声子传播 - 探针显微镜
- DOI:10.1021/acsphotonics.8b01736
- 发表时间:2019
- 期刊:
- 影响因子:7
- 作者:Van Goethem, Erika M.;Pinion, Christopher W.;Cating, Emma E.;Cahoon, James F.;Papanikolas, John M.
- 通讯作者:Papanikolas, John M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Cahoon其他文献
James Cahoon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Cahoon', 18)}}的其他基金
Ratcheting Electrons with Silicon Geometric Diodes for Quasi-ballistic Terahertz Rectennas
用于准弹道太赫兹整流天线的硅几何二极管棘轮电子
- 批准号:
2201292 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Thermodynamics and Kinetics of Hybrid Perovskite Amino-Deliquescence and Efflorescence
杂化钙钛矿氨基潮解和风化的热力学和动力学
- 批准号:
2102469 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
- 批准号:
2050764 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
- 批准号:
2121643 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Quintuple P-N Junction Nanowires for Wireless Water Splitting in Particle Suspension Reactors
用于颗粒悬浮反应器中无线水分解的五重 P-N 结纳米线
- 批准号:
1914711 - 财政年份:2019
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
CAREER: Developing Advanced Morphological Control of Nanowires to Encode Photonic and Optoelectronic Functionality
职业:开发纳米线的先进形态控制以编码光子和光电功能
- 批准号:
1555001 - 财政年份:2016
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
Visualizing Charge Carrier Dynamics in Semiconductor Nanowires Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化半导体纳米线中的载流子动力学
- 批准号:
1464776 - 财政年份:2015
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
High-Resolution Morphological Control of Silicon Nanowires for Bottom-Up Photonics and Plasmonics
用于自下而上光子学和等离子体激元学的硅纳米线的高分辨率形态控制
- 批准号:
1308695 - 财政年份:2013
- 资助金额:
$ 54万 - 项目类别:
Continuing Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
- 批准号:
2316827 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
- 批准号:
2324943 - 财政年份:2023
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Catalyst Project: Age and temperature-dependent millimeter-wave charge carrier dynamics in hybrid perovskite films
催化剂项目:混合钙钛矿薄膜中与年龄和温度相关的毫米波载流子动力学
- 批准号:
2200518 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Correlation Between Charge Carrier Dynamics and Device Properties in Working Quasi-Two-Dimensional Perovskite Light-Emitting Diodes
准二维钙钛矿发光二极管中电荷载流子动力学与器件特性之间的相关性
- 批准号:
EP/X027465/1 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Fellowship
EAGER: Electrically pumped transient charge-carrier dynamics of metal halide perovskite light-emitting diodes
EAGER:金属卤化物钙钛矿发光二极管的电泵瞬态载流子动力学
- 批准号:
2222043 - 财政年份:2022
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
NSF/DMR-BSF: Artificial Semiconductor Nanocrystal Molecules for Charge Carrier Separation
NSF/DMR-BSF:用于电荷载流子分离的人造半导体纳米晶体分子
- 批准号:
2026741 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Modelling charge carrier dynamics in metal halide perovskites for next-generation solar cells
模拟下一代太阳能电池金属卤化物钙钛矿中的载流子动力学
- 批准号:
2593494 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Studentship
Using Spacer Molecular Structure to Control Energetics, Stability, Charge-Carrier Transport, and Photovoltaic Performance in 2D Organic Metal Halide Perovskites
利用间隔分子结构控制二维有机金属卤化物钙钛矿的能量、稳定性、载流子传输和光伏性能
- 批准号:
2102257 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
Standard Grant
Charge carrier dynamics in core-shell nanoparticles
核壳纳米颗粒中的载流子动力学
- 批准号:
563386-2021 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
University Undergraduate Student Research Awards
Temperature Dependent Charge Carrier Recombination in Organic Metal Halide Perovskite Photodetectors
有机金属卤化物钙钛矿光电探测器中与温度相关的载流子复合
- 批准号:
494710706 - 财政年份:2021
- 资助金额:
$ 54万 - 项目类别:
WBP Fellowship