Quintuple P-N Junction Nanowires for Wireless Water Splitting in Particle Suspension Reactors

用于颗粒悬浮反应器中无线水分解的五重 P-N 结纳米线

基本信息

  • 批准号:
    1914711
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The inexpensive generation of hydrogen from water using sunlight ("photocatalytic water splitting") would provide an abundant source of renewable fuel. High efficiency solar water splitting reactors will require new types of photocatalytic materials and advanced reactor designs. Silicon is the second most abundant element in the Earth's crust, is non-toxic, and is the basis for nearly all modern electronics. This research project will explore a way to use silicon in photocatalytic water splitting by way of elongated particles ("nanowires") suspended in water. These nanowires will be grown using a chemical process that enables hundreds of millions of nanowires to be created at once with a size that is 100-1000 times smaller than a human hair. Although these particles are small, they have a complex internal structure. When illuminated with light, the internal structure allows the wires to generate a voltage similar to the that of AA or AAA batteries. This research project will explore the fundamental aspects of the growth of silicon nanowires and will examine how the design of the structures affects the light absorbed and the voltage generated. The ability of these particles to perform chemical reactions when suspended in water, using the voltage induced by light, will be tested in a novel reactor design. This project will also provide research experiences and training for students from the high school through graduate school level and will provide multiple opportunities for the public to learn about photocatalytic water splitting. The results should open the door to new technological applications of silicon that are made possible by the control of particle size and composition at a microscopic scale. Particle suspension reactors, in which photoactive nanoparticles are suspended in water, are a potentially low-cost design for solar-driven photoelectrochemical water splitting to produce affordable hydrogen. To realize this device architecture, the development of a photoactive nanoparticle that both produces enough voltage and absorbs a broad spectrum of visible to near-infrared light is needed. This research project will address the synthesis and development of silicon nanowires that can be encoded with an arbitrary number of p-i-n junctions to produce large photovoltages in excess of the 1.23 V thermodynamic potential needed for water splitting. The multijunction silicon nanowires are synthesized by metal-catalyzed growth using the vapor-liquid-solid (VLS) growth mechanism, and p-n or p-i-n junctions are formed by in situ modulation of dopants as the nanowire grows. The goal of this research project is to perform fundamental studies on the growth, processing, and properties of single nanowires to enable the design of high-performance quintuple p-i-n junction nanowires that can be used for water splitting. In this structure, each of the five junctions must individually operate as an efficient solar cell, and in addition, they must each be connected in series by an efficient tunnel junction. In addition to the synthesis of axial p-(p-i-n)x-n nanowires, where x ranges from 1 to 15 junctions, the project will employ a combined experimental and computational evaluation of single-nanowire photovoltaic performance. Both the electrical performance and light absorption characteristics will be evaluated, and the results will feed back into the synthesis and design of structures. Proof-of-concept single-nanowire water splitting devices and particle suspension reactors will be developed for initial evaluation of the proof of concept.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用阳光从水中生产氢的廉价方法(“光催化水分解”)将提供丰富的可再生燃料来源。高效的太阳能水分解反应器需要新型的光催化材料和先进的反应器设计。硅是地壳中含量第二丰富的元素,它是无毒的,是几乎所有现代电子产品的基础。该研究项目将探索一种方法,通过悬浮在水中的细长颗粒(“纳米线”),将硅用于光催化水分解。这些纳米线将使用一种化学方法来生长,这种方法可以一次制造出数亿根纳米线,其尺寸比人类头发小100-1000倍。虽然这些颗粒很小,但它们具有复杂的内部结构。当光线照射时,内部结构允许导线产生类似于AA或AAA电池的电压。该研究项目将探索硅纳米线生长的基本方面,并将研究结构的设计如何影响吸收的光和产生的电压。这些粒子悬浮在水中时,利用光感应的电压进行化学反应的能力,将在一种新型反应堆设计中进行测试。该项目还将为从高中到研究生阶段的学生提供研究经验和培训,并将为公众提供多种了解光催化水分解的机会。这一结果将为硅的新技术应用打开大门,这些应用将通过在微观尺度上控制颗粒大小和组成而成为可能。粒子悬浮反应器,其中光活性纳米粒子悬浮在水中,是一种潜在的低成本设计,用于太阳能驱动的光电化学水分解,以产生负担得起的氢。为了实现这种器件结构,需要开发一种光活性纳米粒子,它既能产生足够的电压,又能吸收广谱的可见光到近红外光。该研究项目将致力于硅纳米线的合成和开发,该纳米线可以编码任意数量的p-i-n结,以产生超过水分解所需的1.23 V热力学势的大光伏。采用气-液-固(VLS)生长机制,通过金属催化生长合成了多结硅纳米线,并在纳米线生长过程中通过掺杂剂的原位调制形成了p-n或p-i-n结。该研究项目的目标是对单纳米线的生长、加工和性能进行基础研究,从而设计出可用于水分解的高性能五元p-i-n结纳米线。在这种结构中,五个结中的每一个都必须作为一个高效的太阳能电池单独运行,此外,它们必须通过一个高效的隧道结串联起来。除了轴向p-(p-i-n)x-n纳米线的合成,其中x的范围从1到15个结,该项目将采用单纳米线光伏性能的实验和计算相结合的评估。电性能和光吸收特性都将被评估,结果将反馈到结构的合成和设计中。将开发概念验证的单纳米线水分解装置和颗粒悬浮反应器,以进行概念验证的初步评估。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Influence of Geometry on Quasi-Ballistic Behavior in Silicon Nanowire Geometric Diodes
  • DOI:
    10.1021/acsanm.2c04666
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Kelly L. White;Max A. Umantsev;Jeremy D. Low;James P. Custer;J. Cahoon
  • 通讯作者:
    Kelly L. White;Max A. Umantsev;Jeremy D. Low;James P. Custer;J. Cahoon
Water splitting with silicon p–i–n superlattices suspended in solution
悬浮在溶液中的硅p-i-n超晶格的水分解
  • DOI:
    10.1038/s41586-022-05549-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Teitsworth, Taylor S.;Hill, David J.;Litvin, Samantha R.;Ritchie, Earl T.;Park, Jin-Sung;Custer, James P.;Taggart, Aaron D.;Bottum, Samuel R.;Morley, Sarah E.;Kim, Seokhyoung
  • 通讯作者:
    Kim, Seokhyoung
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Cahoon其他文献

James Cahoon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Cahoon', 18)}}的其他基金

Ratcheting Electrons with Silicon Geometric Diodes for Quasi-ballistic Terahertz Rectennas
用于准弹道太赫兹整流天线的硅几何二极管棘轮电子
  • 批准号:
    2201292
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Thermodynamics and Kinetics of Hybrid Perovskite Amino-Deliquescence and Efflorescence
杂化钙钛矿氨基潮解和风化的热力学和动力学
  • 批准号:
    2102469
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Optical Bound States and Non-linearity in Geometrically-Modulated Dielectric Nanowires
几何调制介电纳米线中的光学束缚态和非线性
  • 批准号:
    2121643
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
REU SITE: Collaborative Research: Nanoscale Detectives -- Elucidating the Structure and Dynamics of Hybrid Perovskite Systems
REU 站点:合作研究:纳米级侦探——阐明混合钙钛矿系统的结构和动力学
  • 批准号:
    2050764
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Visualizing Charge Carrier Dynamics in Transition Metal Dichalcogenide Nanoflakes Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化过渡金属二硫属化物纳米片中的载流子动力学
  • 批准号:
    1764228
  • 财政年份:
    2018
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
CAREER: Developing Advanced Morphological Control of Nanowires to Encode Photonic and Optoelectronic Functionality
职业:开发纳米线的先进形态控制以编码光子和光电功能
  • 批准号:
    1555001
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Visualizing Charge Carrier Dynamics in Semiconductor Nanowires Using Femtosecond Pump-Probe Microscopy
使用飞秒泵浦探针显微镜可视化半导体纳米线中的载流子动力学
  • 批准号:
    1464776
  • 财政年份:
    2015
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
High-Resolution Morphological Control of Silicon Nanowires for Bottom-Up Photonics and Plasmonics
用于自下而上光子学和等离子体激元学的硅纳米线的高分辨率形态控制
  • 批准号:
    1308695
  • 财政年份:
    2013
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

单分子FRET用于DNA折纸阵列中的anti-junction可控机械化 学耦合研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
靶向DNA Holliday junction结构新配体的发现及抗非BRCA突变型三阴性乳腺癌的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Holliday Junction解离酶RuvA在分枝杆菌噬菌体抗性中的作用与分子机理
  • 批准号:
    82072246
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
Holliday junction解离酶Moc1调控叶绿体拟核分离的结构和分子机制研究
  • 批准号:
    31971222
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
硫化叶菌Holliday junction解离酶Hje的体内功能与作用机制研究
  • 批准号:
    31470184
  • 批准年份:
    2014
  • 资助金额:
    88.0 万元
  • 项目类别:
    面上项目
柔嫩艾美耳球虫子孢子入侵关键结构 Moving Junction 的分子基础与功能研究
  • 批准号:
    31201699
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
基于Junction tree推理的多运动平台分散式协同导航算法研究
  • 批准号:
    61203200
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
古菌Hjm解旋酶参与复制叉回退和Holliday junction加工的机制
  • 批准号:
    30870046
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
  • 批准号:
    10752248
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
遺伝性肝内胆汁うっ滞症の発症と病態におけるTight Junction分子の役割の解析
紧密连接分子在遗传性肝内胆汁淤积症发病和病理中的作用分析
  • 批准号:
    23K06485
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Defining single-channel paracellular (tight junction) conductances using nanotechnology
使用纳米技术定义单通道旁细胞(紧密连接)电导
  • 批准号:
    10593421
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Age, Injury, and the Neuromuscular Junction
年龄、损伤和神经肌肉接头
  • 批准号:
    10738374
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
DNA junctionに蛍光色素と金属錯体を組み込んだ人工光合成系の開発
开发将荧光染料和金属复合物融入 DNA 连接的人工光合作用系统
  • 批准号:
    22KJ1536
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Do seamounts on fossil oceanic spreading centers record triple-junction migration or mantle-plume activity? Guadalupe Island, Mexico as an archetype
化石海洋扩张中心的海山是否记录了三交点迁移或地幔柱活动?
  • 批准号:
    2236476
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
All-Evaporated Triple-Junction Perovskite Photovoltaic Devices
全蒸发三结钙钛矿光伏器件
  • 批准号:
    EP/W007975/2
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Fellowship
spin conduction engineering for the p-n junction of a spinel oxide heterointerface
尖晶石氧化物异质界面 p-n 结的自旋传导工程
  • 批准号:
    23H01438
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Ex vivo maintenance of endothelial cell barrier integrity via gap junction modification to prevent early ischemic injury in solid organ transplantation
通过间隙连接修饰离体维持内皮细胞屏障完整性以预防实体器官移植中的早期缺血性损伤
  • 批准号:
    10741452
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了