Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
基本信息
- 批准号:RGPIN-2021-03916
- 负责人:
- 金额:$ 1.89万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Canada is the second largest country by total area, but it has one of the lowest population densities in the world. Approximately two-thirds of the population resides within 100 kilometers of the county's southern border, which accounts for only 4% of Canada's total territory. Despite this uneven distribution of the population, vast networks of civil infrastructure are spread throughout the sparsely inhabited regions of Canada. These assets are critical for equitable access and social and economical prosperity of Indigenous and local communities, and many farming and industrial operations depend on their reliable performance. Many research efforts have developed methods for diagnostics and management of the civil infrastructure, but the majority of these projects focused on major assets that exist in densely populated regions. For example, most of the research in the area of road condition assessment developed methods for assessment of paved roads. Unpaved roads, however, have a major role in transportation and service activities in the remote regions of Canada, where about 60% of the country's road network is unpaved. In addition to the roads, many vital infrastructure assets, such as hydraulic structures, are scattered in the remote regions of Canada. Many of these assets were built decades ago and a considerable portion of them are rated in fair or below fair levels by the Canadian Infrastructure Report Card. Conventional infrastructure condition assessment methods are labour-intensive and expensive, and these issues are more problematic in remote regions due to the shortage of experts and the long distances that need to be covered. This research program aims at developing methods to enhance the automation level of condition assessment in remote regions and data analysis by the application of advanced data collection and machine learning methods. The main objectives of this research plan can be summarized as: 1) bridge the gap between the state-of-the-art computer vision and machine learning algorithms and practical applications in the field of infrastructure condition assessment; 2) data-centric management of the infrastructure assets in the remote regions of Canada. The proposed research program consists of several research projects and each one will investigate a specific and related topic in this area. This research program will potentially transform condition assessment of infrastructure assets from conventional to data-driven practices with high level of automation, leading to improvements in efficiency and accuracy of the condition assessment processes. In addition, the developed methods will facilitate the contribution of local communities to the management of infrastructure and reduce the need for outsourcing condition assessment efforts. The increased automation level of the condition assessments in remote regions will result in cost savings and improvement in the serviceability of the infrastructure in the rural regions of Canada.
加拿大是世界上第二大国家,但它是世界上人口密度最低的国家之一。大约三分之二的人口居住在该县南部边境100公里以内,仅占加拿大总领土的4%。尽管人口分布不均,但庞大的民用基础设施网络遍布加拿大人口稀少的地区。这些资产对于土著和当地社区的公平获取以及社会和经济繁荣至关重要,许多农业和工业活动都依赖于其可靠的性能。许多研究工作开发了民用基础设施的诊断和管理方法,但这些项目大多集中在人口稠密地区的主要资产上。例如,道路状况评估领域的大多数研究开发了用于评估铺设道路的方法。然而,在加拿大的偏远地区,未铺设的道路在运输和服务活动中发挥着重要作用,该国约60%的道路网是未铺设的。除了道路,许多重要的基础设施资产,如水利结构,分散在加拿大的偏远地区。这些资产中有许多是几十年前建造的,其中相当一部分被加拿大基础设施报告卡评为公平或低于公平水平。传统的基础设施状况评估方法是劳动密集型和昂贵的,由于缺乏专家和需要覆盖的距离很长,这些问题在偏远地区更成问题。 该研究计划旨在通过应用先进的数据收集和机器学习方法,开发提高偏远地区状况评估和数据分析自动化水平的方法。该研究计划的主要目标可以概括为:1)弥合最先进的计算机视觉和机器学习算法与基础设施状况评估领域的实际应用之间的差距; 2)以数据为中心管理加拿大偏远地区的基础设施资产。拟议的研究计划包括几个研究项目,每个项目将调查该领域的一个特定和相关的主题。该研究计划将有可能将基础设施资产的状况评估从传统的做法转变为具有高自动化水平的数据驱动的做法,从而提高状况评估过程的效率和准确性。此外,制定的方法将促进当地社区对基础设施管理的贡献,并减少外包条件评估工作的必要性。提高偏远地区状况评估的自动化水平将节省成本,并改善加拿大农村地区基础设施的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RezazadehAzar, Ehsan其他文献
RezazadehAzar, Ehsan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RezazadehAzar, Ehsan', 18)}}的其他基金
Automated data collection and machine learning methods for civil infrastructure condition assessment in sparsely inhabited regions of Canada
用于加拿大人烟稀少地区民用基础设施状况评估的自动数据收集和机器学习方法
- 批准号:
RGPIN-2021-03916 - 财政年份:2021
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Computer vision-based condition assessment of the public transit infrastructure assets
基于计算机视觉的公共交通基础设施资产状况评估
- 批准号:
561003-2020 - 财政年份:2020
- 资助金额:
$ 1.89万 - 项目类别:
Alliance Grants
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2019
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2018
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2017
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Improving productivity of material cutting and movement in steel fabrication plants
提高钢铁制造厂材料切割和移动的生产率
- 批准号:
507596-2016 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Engage Grants Program
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2016
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
Smart vision-based monitoring system for heavy construction and surface mining jobsites
适用于重型建筑和露天采矿作业现场的智能视觉监控系统
- 批准号:
RGPIN-2015-03812 - 财政年份:2015
- 资助金额:
$ 1.89万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
半参数空间自回归面板模型的有效估计与应用研究
- 批准号:71961011
- 批准年份:2019
- 资助金额:16.0 万元
- 项目类别:地区科学基金项目
基于高频信息下高维波动率矩阵估计及应用
- 批准号:71901118
- 批准年份:2019
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
- 批准号:11061041
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316654 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Novel wearable sensor calibration and validation for automated measurement of screen time in children
新型可穿戴传感器校准和验证,用于自动测量儿童屏幕时间
- 批准号:
10585840 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10658028 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Neural Conversational Agent for Automated Weight Loss Counseling
用于自动减肥咨询的神经对话代理
- 批准号:
10668094 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316653 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316652 - 财政年份:2023
- 资助金额:
$ 1.89万 - 项目类别:
Standard Grant
Establishing Automated Cryopreservation System for Biospecimen Storage
建立生物标本储存自动化冷冻保存系统
- 批准号:
10533660 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10552638 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:
Image Tools for Computational Cellular Barcoding and Automated Annotation
用于计算细胞条形码和自动注释的图像工具
- 批准号:
10367874 - 财政年份:2022
- 资助金额:
$ 1.89万 - 项目类别:














{{item.name}}会员




