LTREB Renewal: Ecological Dynamics in an Experimentally-Tractable Natural Ecosystem
LTREB 更新:可实验处理的自然生态系统中的生态动力学
基本信息
- 批准号:1556874
- 负责人:
- 金额:$ 44.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A central goal for ecology is to document if and how the environment is changing, to determine the causes of these changes, and to predict what the consequences of these changes will be to ecological systems. This is a challenge because of the complex network of connections among the living organisms and the non-living parts of ecosystems. Mathematical models are essential tools to keep track of these ecological interactions and to predict how they will respond to environmental changes. However, models need to be linked to data from nature. Two major challenges in developing predictive models of environmental change are 1) collecting sufficient data on how interactions among a complete set of species and environmental factors change over time, and (2) rigorously testing model predictions with experiments. This study will combine a quarter-century long series of data on 100+ species and relevant environmental variables in the rocky shoreline of Tatoosh Island in Washington state, with a long-term field experiment that mimics the extinction of a key species, the California mussel. The long term data will be applied to several different modeling approaches and predictions from these models will subsequently be tested with the long-term field experiment. The research will identify the most promising modeling approaches for making ecological prediction, and make them available to ecosystem managers and policy makers interested in the consequences of environmental impacts such as species extinction and global change. The comprehensive data series also will be made available to other scientists to be used as a platform for additional studies. This project will also engage undergraduate students in field research, data management, mathematical modeling, and in communicating with the public, managers, and policy makers. Furthermore, because the challenge of understanding networks of species interactions is shared with other scientific disciplines that deal with complex networks, project results will be of general value in other disciplines. The researcher will conduct annual surveys of replicated permanent plots for plants and animals on the shoreline in two ways: 1) by documenting the species identities under 2,600 fixed points over a 5-year period and generating annual transition probabilities among species, and 2) by generating abundance estimates in permanent 60 x 60 cm census plots. Fifteen experimental plots will be maintained by selectively removing individuals of Mytilus californianus when they appear, leaving all other species undisturbed. Environmental data will be collected every 30 minutes using a submersible data logger and a land-based weather station. Water chemistry, including critical nutrients, will be monitored. These data will be analyzed in several ways, including 1) parameterizing transition-based models (Markov chain models, spatially-explicit cellular automata) with environmental dependencies, 2) parameterizing multi-species population dynamic models from plot counts, 3) applying multi-spatial cross-convergent mapping and testing whether it accurately detects key species known to have strong causal effects from independent experiments, 4) applying neural network models and testing their predictions about the consequences of species extinction, and 5) testing whether there is a relationship between the variability of a species' abundance through time and its importance to the ecosystem as assessed by independent experiments. The community modeling projects enabled by the rich long term data sets have a strong potential to advance our understanding of mechanisms underlying community dynamics and their response to environmental change.
生态学的一个核心目标是记录环境是否以及如何变化,确定这些变化的原因,并预测这些变化对生态系统的影响。这是一项挑战,因为生态系统的生物体和非生物部分之间有着复杂的联系网络。 数学模型是跟踪这些生态相互作用并预测它们将如何应对环境变化的重要工具。然而,模型需要与来自自然的数据联系起来。开发环境变化预测模型的两个主要挑战是:(1)收集关于一组完整的物种和环境因素之间的相互作用如何随时间变化的足够数据,以及(2)通过实验严格测试模型预测。这项研究将结合联合收割机的四分之一个世纪的一系列数据,100多个物种和相关的环境变量在岩石海岸线的塔图什岛在华盛顿州,与长期的实地实验,模仿灭绝的一个关键物种,加州贻贝。长期数据将应用于几种不同的建模方法,随后将通过长期现场实验对这些模型的预测进行测试。该研究将确定最有前途的生态预测建模方法,并将其提供给对物种灭绝和全球变化等环境影响后果感兴趣的生态系统管理者和政策制定者。综合数据系列也将提供给其他科学家,作为进一步研究的平台。 该项目还将让本科生参与实地研究,数据管理,数学建模,以及与公众,管理人员和政策制定者的沟通。此外,由于理解物种相互作用网络的挑战与处理复杂网络的其他科学学科共享,因此项目结果将在其他学科中具有普遍价值。研究人员将以两种方式对海岸线上的植物和动物复制永久性地块进行年度调查:1)记录5年期间2 600个固定点下的物种身份,并生成物种之间的年度转移概率,2)在永久性60 x 60厘米普查地块中生成丰度估计。 15个实验区将通过选择性地移除出现的加州贻贝个体来维持,而不干扰所有其他物种。 将使用潜水数据记录器和陆基气象站每30分钟收集一次环境数据。将监测水的化学性质,包括关键的营养物质。 这些数据将以几种方式进行分析,包括1)参数化基于过渡的模型(马尔可夫链模型,空间显式细胞自动机)与环境的依赖性,2)参数化多物种种群动态模型,从情节计数,3)应用多空间交叉收敛映射和测试是否准确地检测关键物种已知有很强的因果关系的影响,从独立的实验,4)应用神经网络模型并测试它们对物种灭绝后果的预测,5)测试物种丰度随时间的变化与其对生态系统的重要性之间是否存在关系,如独立实验所评估的那样。由丰富的长期数据集支持的社区建模项目具有很强的潜力,可以促进我们对社区动态及其对环境变化的响应机制的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Wootton其他文献
John Wootton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Wootton', 18)}}的其他基金
Eco-Evolutionary Response to the Scale of Temporal Environmental Fluctuation
生态进化对时间环境波动规模的反应
- 批准号:
1851489 - 财政年份:2019
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Drivers and Consequences of Intraspecific Trait Variation: Ecology of a Forest-Stream Community
论文研究:种内性状变异的驱动因素和后果:森林溪流群落的生态学
- 批准号:
1311293 - 财政年份:2013
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: A Mechanistic Investigation of Range Limits Across Scales
论文研究:跨尺度范围限制的机制研究
- 批准号:
0910062 - 财政年份:2009
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
LTREB: Ecological Dynamics in an Experimentally-Tractable Natural Ecosystems
LTREB:可实验处理的自然生态系统中的生态动力学
- 批准号:
0919420 - 财政年份:2009
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
Dissertation Research: Mechanisms of facilitation among invasive plants and animals
论文研究:入侵植物和动物之间的促进机制
- 批准号:
0708462 - 财政年份:2007
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
Dissertation Research: Quantitative Interaction Strengths in Omnivorous Food Webs Across a Gradient in Primary Productivity
论文研究:跨初级生产力梯度的杂食性食物网的定量相互作用强度
- 批准号:
0608178 - 财政年份:2006
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
Field Parameterization and Experimental Tests of the Neutral Theory of Biodiversity
生物多样性中性理论的现场参数化和实验检验
- 批准号:
0452687 - 财政年份:2005
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
U.S.-Chile Dissertation Enhancement: Dispersal, Competition, and the Synergistic Interactions of Multiple Species Invasions
美国-智利论文强化:扩散、竞争和多种物种入侵的协同相互作用
- 批准号:
0456110 - 财政年份:2005
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
Effects of Demography and Genetics on Extinction in Small Populations: Experiments with an Exploited Kelp
人口统计学和遗传学对小种群灭绝的影响:利用被利用的海带进行的实验
- 批准号:
0117801 - 财政年份:2001
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
Dissertation Research: Elucidating the Population Dynamics of a Vector-Borne Pathogen: An Empirical and Modeling Approach
论文研究:阐明媒介传播病原体的种群动态:一种经验和建模方法
- 批准号:
9972739 - 财政年份:1999
- 资助金额:
$ 44.85万 - 项目类别:
Standard Grant
相似国自然基金
动力蛋白更新(Prestin Renewal)对耳蜗OHC电运动调控的研究
- 批准号:30600700
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship
Renewal: Fundamental Physics of Polariton Condensates
更新:极化子凝聚体的基础物理
- 批准号:
2306977 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
TEA Center Renewal: Sustaining Technological Excellence Pursuit in Advanced Manufacturing at Navajo Technical University (S.T.E.P)
TEA 中心更新:纳瓦霍技术大学 (S.T.E.P) 持续追求先进制造技术卓越
- 批准号:
2332354 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Continuing Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship
(Renewal) I-AIM: Individualised Artificial Intelligence for Medicine
(续订)I-AIM:个性化医学人工智能
- 批准号:
MR/X024288/1 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship
Collective behaviour of cognitive agents (renewal)
认知主体的集体行为(更新)
- 批准号:
MR/X036863/1 - 财政年份:2024
- 资助金额:
$ 44.85万 - 项目类别:
Fellowship