Collaborative Research: Structure and Function of Whole-tree 3D Xylem Networks in Response to Past, Present, and Future Drought
合作研究:全树 3D 木质部网络应对过去、现在和未来干旱的结构和功能
基本信息
- 批准号:1557917
- 负责人:
- 金额:$ 46.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Forest productivity is linked to the growth and maintenance of plant vascular systems that transport water from the soil to the leaves. These vascular systems are made up of a network of thousands of interconnected conduits smaller than the diameter of a human hair, collectively known as xylem. As plants are exposed to drought, this transport system can become dysfunctional, leading to reduced growth, and ultimately plant death. Current knowledge of the overall connectivity of the xylem network is limited, and this prevents a complete understanding of how water and nutrients are distributed through plants, and also limits the ability to predict how different species will adapt to limited water availability. The overarching goal of this project is to characterize the relationship between the three-dimensional (3D) structure of the xylem network and its function during drought in northeastern hardwood trees. The research will determine which tree species are most resilient under changing environmental conditions, establish tipping points beyond which species cannot recover from water deficits, and develop a model to predict widespread tree mortality under droughts of varying length and intensity. These data will inform conservation and timber production management by predicting shifts in tree mortality given environmental change scenarios. An online database will be created where 3D xylem models can be downloaded and then 3D-printed for use in biology and plant science classes, providing a unique, hands-on approach to learning plant functional anatomy. The project involves close collaboration between a major research university and a primarily undergraduate institution, thereby increasing undergraduate exposure to a research environment and education in STEM fields. Xylem network connectivity is one of the least understood areas of plant anatomy, primarily due to a lack of suitable visualization tools to study the complex, three-dimensional (3D) organization of the microscopic tissues that make up xylem. Plasticity in 3D xylem network anatomy is understood even less, yet it could have significant impacts on the movement of water, nutrients, pathogens, or drought and freeze-thaw induced embolisms. Furthermore, xylem network organization should influence commonly measured xylem vulnerability curves, but a mechanistic model that describes how these curves arise does not exist. Here, the aim is to use physiological and anatomical measurements of existing adult and juvenile trees, as well as juvenile trees in a common garden drought experiment, to explicitly test a range of hypotheses regarding the influence of xylem network connectivity in four dominant northeastern hardwood tree species. Using X-ray micro-tomography, wood samples from roots, trunks, and stems will be analyzed in 3D to explore the responses of trees to environmental changes over the past 15 years within close proximity to the Long Term Ecological Research site tower at Harvard Forest. A mechanistic model will then be developed to predict xylem vulnerability and physiological tipping points for each species at two life history stages to help understand how community dynamics will shift given changed environmental conditions. This project will support the career development of a postdoctoral associate, a beginning investigator, and provide opportunities for undergraduate research, including positions in the Harvard Forest Research Experiences for Undergraduates program.
森林生产力与植物维管系统的生长和维持有关,植物维管系统将水分从土壤输送到树叶。这些血管系统由数千个相互连接的导管组成的网络组成,这些导管比人类头发的直径还小,统称为木质部。当植物暴露在干旱中时,这种运输系统可能会变得功能失调,导致生长减缓,最终导致植物死亡。目前对木质部网络整体连通性的了解是有限的,这阻碍了对水和营养物质如何通过植物分布的完整理解,也限制了预测不同物种将如何适应有限的水资源的能力。该项目的总体目标是表征干旱期间东北硬木树木质部网络的三维(3D)结构及其功能之间的关系。该研究将确定哪些树种在不断变化的环境条件下最具弹性,建立临界点,超过该临界点,物种无法从缺水中恢复,并开发一个模型来预测在不同长度和强度的干旱下广泛的树木死亡率。这些数据将通过预测给定环境变化情景下树木死亡率的变化,为保护和木材生产管理提供信息。将创建一个在线数据库,可以下载3D木质部模型,然后3D打印用于生物学和植物科学课程,为学习植物功能解剖学提供独特的动手方法。该项目涉及主要研究型大学和主要本科院校之间的密切合作,从而增加本科生接触到STEM领域的研究环境和教育。木质部网络连接是植物解剖学中最不了解的领域之一,主要是由于缺乏合适的可视化工具来研究构成木质部的微观组织的复杂三维(3D)组织。3D木质部网络解剖学中的可塑性甚至更少,但它可能对水,营养物质,病原体或干旱和冻融诱导的栓塞的运动产生重大影响。此外,木质部网络组织应该影响通常测量的木质部脆弱性曲线,但描述这些曲线如何出现的机制模型并不存在。在这里,我们的目的是使用现有的成年人和少年树木,以及在一个共同的花园干旱实验中的少年树木的生理和解剖测量,明确测试一系列的假设木质部网络连接的影响,在四个占主导地位的东北部硬木树种。使用X射线显微断层扫描技术,将对来自根、树干和茎的木材样本进行3D分析,以探索过去15年来树木对环境变化的反应,这些树木靠近哈佛森林的长期生态研究基地塔。然后将开发一个机械模型来预测木质部脆弱性和生理临界点,每个物种在两个生活史阶段,以帮助了解如何社区动态将改变给定的环境条件。该项目将支持博士后助理,开始调查的职业发展,并提供本科研究的机会,包括在哈佛森林研究经验的本科生计划的职位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Craig Brodersen其他文献
Craig Brodersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Craig Brodersen', 18)}}的其他基金
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: THE CRITICAL IMPORTANCE OF DIVERSE LEAF "HAIRSTYLES": INTEGRATIVE QUANTIFICATION OF ANATOMY, FUNCTION, EVOLUTION AND ECOLOGY OF TRICHOMES
合作研究:多样化叶子“发型”的至关重要性:毛状体的解剖学、功能、进化和生态学的综合量化
- 批准号:
1950498 - 财政年份:2020
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Conifer leaf anatomy determines hydraulic functioning
合作研究:针叶树叶解剖结构决定水力功能
- 批准号:
1656610 - 财政年份:2017
- 资助金额:
$ 46.38万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
- 批准号:
2316136 - 财政年份:2024
- 资助金额:
$ 46.38万 - 项目类别:
Continuing Grant
Collaborative Research: The influence of incoming plate structure and fluids on arc melt generation at the Lesser Antilles subduction system
合作研究:来料板结构和流体对小安的列斯群岛俯冲系统电弧熔化产生的影响
- 批准号:
2316137 - 财政年份:2024
- 资助金额:
$ 46.38万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400353 - 财政年份:2024
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
- 批准号:
2309547 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Assembling the foundation of modern mammal community structure in the first 7 million years after the K/Pg mass extinction
合作研究:为 K/Pg 大规模灭绝后的前 700 万年建立现代哺乳动物群落结构的基础
- 批准号:
2321344 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
- 批准号:
2227128 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Continuing Grant
Collaborative Research: Structure and function: How microenvironment facilitates antimicrobial response to environmental stress in a defensive symbiosis
合作研究:结构和功能:微环境如何促进防御性共生中的抗菌剂对环境应激的反应
- 批准号:
2247195 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant
Collaborative Research: RUI: The challenges of living small: functional tradeoffs in the vertebral bone structure of diminutive mammals
合作研究:RUI:小型生活的挑战:小型哺乳动物椎骨结构的功能权衡
- 批准号:
2223964 - 财政年份:2023
- 资助金额:
$ 46.38万 - 项目类别:
Standard Grant