Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
基本信息
- 批准号:2400353
- 负责人:
- 金额:$ 6.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical DescriptionAny owner of a mobile phone or laptop computer knows how hot they can get when being used. This is why electronic devices are engineered to shed heat and reduce the temperature under operation. This problem is critical at the nanoscale, where it is necessary to control thermal conduction at boundaries between different materials and components. Consider two-dimensional (2D) materials such as graphene, which have shown great promise. These consist of layers of atoms that are tightly bound in the plane and weakly bound between layers. If heat cannot be efficiently transported between layers, there would be significant limits to the use of 2D materials in next generation electronics. On the other hand, a strong thermal boundary could provide the potential for remarkable materials with thermal isolation better than air. The need to understand and control thermal boundary conductance at 2D-2D interfaces and between 2D and bulk materials motivates this project. Investigators will manipulate the thermal properties of 2D materials through changes in their interface structure and chemistry. Investigators will study how to control physical coupling and the effect of novel heat transfer mechanisms. An integral part of this project will be to develop experiential education programs for underrepresented students at the University of Texas at Dallas, the Carnegie Institute of Washington, and local high schools and community colleges. The researchers will work with local museums to develop new artwork conservation programs using optical techniques such as Raman spectroscopy.Technical DescriptionA major gap in the present knowledge of thermal boundary conductance (TBC) is how it can be manipulated by changing the structure of 2D-2D and 2D-bulk interfaces. As these interfaces are often set when the sample is fabricated, only a subset of structure-property relationships has been investigated, and often across disparate samples subject to the variation common to 2D materials. This project is applying extreme pressure within a diamond anvil cell as a new technique for broadly changing the structure of the same interface while measuring the TBC. This is allowing researchers to decode fundamental knowledge on the structure-property relationships for the TBC while also gaining insights into practical pathways for manipulating the thermal properties of 2D materials and thermal limitations of 2D devices. Specific structural and chemical changes at the interface include (1) the increase of physical coupling, (2) the transition from nonbonded to bonded chemistry, and (3) the onset of new phononic and nonphononic heat transfer mechanisms. Raman spectroscopy at optical wavelengths is being used to simultaneously characterize the interface and measure the TBC. The measurements are backed by first-principles modeling and molecular dynamics simulations. In addition to the TBC, these models are allowing researchers to identify renormalizations of the phonon dispersion and scattering, which can affect many phonon-limited areas of energy transport and conversion in 2D materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性说明任何拥有移动的手机或笔记本电脑的人都知道它们在使用时会有多热。这就是为什么电子设备被设计成散热并降低工作温度的原因。这个问题在纳米尺度上是至关重要的,在纳米尺度上,有必要控制不同材料和组件之间边界处的热传导。考虑二维(2D)材料,如石墨烯,它已经显示出很大的希望。这些由原子层组成,这些原子层在平面内紧密结合,层与层之间弱结合。如果热量不能在层与层之间有效地传输,那么在下一代电子产品中使用2D材料将受到很大的限制。另一方面,强大的热边界可以提供比空气更好的隔热材料的潜力。需要了解和控制在2D-2D界面和2D和散装材料之间的热边界传导激励这个项目。研究人员将通过改变界面结构和化学来操纵2D材料的热特性。研究人员将研究如何控制物理耦合和新的传热机制的影响。该项目的一个组成部分将是为德克萨斯大学达拉斯分校、华盛顿卡内基研究所以及当地高中和社区学院的代表性不足的学生制定体验式教育方案。研究人员将与当地博物馆合作,开发新的艺术品保护计划,使用光学技术,如拉曼spectroscopy.Technical DescriptionA主要差距,目前的知识热边界传导(TBC)是如何可以通过改变二维二维和二维散装接口的结构来操纵。由于这些界面通常是在制造样品时设置的,因此仅研究了结构-性质关系的子集,并且通常跨不同的样品进行2D材料常见的变化。该项目是在金刚石压砧单元内施加极压,作为一种新技术,用于在测量TBC时广泛改变同一界面的结构。这使研究人员能够解码TBC结构-性能关系的基础知识,同时也可以深入了解操纵2D材料热性能和2D器件热限制的实际途径。在界面处的具体结构和化学变化包括(1)物理耦合的增加,(2)从非键合化学向键合化学的转变,以及(3)新的声子和非声子传热机制的开始。光学波长的拉曼光谱被用于同时表征界面和测量TBC。这些测量得到了第一性原理建模和分子动力学模拟的支持。除了TBC之外,这些模型还使研究人员能够识别声子色散和散射的重正化,这可能会影响2D材料中能量传输和转换的许多声子限制区域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Goncharov其他文献
On Smoothness of the Green Function for the Complement of a Rarefied Cantor-Type Set
- DOI:
10.1007/s00365-010-9092-9 - 发表时间:
2010-04-08 - 期刊:
- 影响因子:1.200
- 作者:
Muhammed Altun;Alexander Goncharov - 通讯作者:
Alexander Goncharov
A tribute to Sasha Beilinson
- DOI:
10.1007/s00029-018-0399-x - 发表时间:
2018-02-16 - 期刊:
- 影响因子:1.200
- 作者:
Michael Finkelberg;Dennis Gaitsgory;Alexander Goncharov;Alexander Polishchuk - 通讯作者:
Alexander Polishchuk
Orthogonal Polynomials on Generalized Julia Sets
- DOI:
10.1007/s11785-017-0669-1 - 发表时间:
2017-04-05 - 期刊:
- 影响因子:0.800
- 作者:
Gökalp Alpan;Alexander Goncharov - 通讯作者:
Alexander Goncharov
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
The Galois group of the category of mixed Hodge–Tate structures
- DOI:
10.1007/s00029-018-0393-3 - 发表时间:
2018-02-09 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Goncharov;Guangyu Zhu - 通讯作者:
Guangyu Zhu
Alexander Goncharov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Goncharov', 18)}}的其他基金
MRI: Acquisition of an advanced X-ray detector for static and dynamic synchrotron X-ray scattering studies of materials at extreme conditions at the Advanced Photon Source
MRI:购买先进的 X 射线探测器,用于在先进光子源的极端条件下对材料进行静态和动态同步加速器 X 射线散射研究
- 批准号:
2320309 - 财政年份:2023
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Thermal conductivity of lower mantle minerals and outer core alloys studied by combined fast pulsed laser and optical spectroscopy techniques
结合快速脉冲激光和光谱技术研究下地幔矿物和外核合金的热导率
- 批准号:
2049127 - 财政年份:2021
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Polylogarithms, Motives, L-Functions, and Quantum Geometry of Moduli Spaces
模空间的多对数、动机、L 函数和量子几何
- 批准号:
1900743 - 财政年份:2019
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by combined fast pulsed laser and optical spectroscopy techniques
通过快速脉冲激光和光谱技术相结合研究地球深部材料的热导率
- 批准号:
1763287 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Moduli Spaces, Motives, Periods, and Scattering Amplitudes
模空间、动机、周期和散射幅度
- 批准号:
1564385 - 财政年份:2016
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
MRI: Acquisition of integrated optical spectroscopy system at the Advanced Photon Source
MRI:在先进光子源处获取集成光谱系统
- 批准号:
1531583 - 财政年份:2015
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Thermal conductivity of Deep Earth's materials studied by fast pulsed laser techniques
通过快速脉冲激光技术研究地球深部材料的热导率
- 批准号:
1520648 - 财政年份:2015
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Development of an Ultrafast Laser Instrument for Probing Earth and Planetary Materials under Extreme Pressures and Temperatures
开发用于在极端压力和温度下探测地球和行星材料的超快激光仪器
- 批准号:
1128867 - 财政年份:2013
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
MODULI SPACES, MOTIVES, PERIODS and SCATTERING AMPLITUDES
模空间、动机、周期和散射幅度
- 批准号:
1301776 - 财政年份:2013
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
- 批准号:
2400352 - 财政年份:2024
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1804843 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
- 批准号:
1805307 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Continuing Grant
CRCNS Research Proposal: Collaborative Research: Modeling and Manipulating Dynamic Network Activity in the Brain
CRCNS 研究提案:协作研究:建模和操纵大脑中的动态网络活动
- 批准号:
1822553 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
CRCNS Research Proposal: Collaborative Research: Modeling and Manipulating Dynamic Network Activity in the Brain
CRCNS 研究提案:协作研究:建模和操纵大脑中的动态网络活动
- 批准号:
1822606 - 财政年份:2018
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating Epigenetic Mechanisms to Enhance Non-Viral Transgene Expression
合作研究:操纵表观遗传机制以增强非病毒转基因表达
- 批准号:
1403214 - 财政年份:2014
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
Collaborative Research: Manipulating Epigenetic Mechanisms to Enhance Non-Viral Transgene Expression
合作研究:操纵表观遗传机制以增强非病毒转基因表达
- 批准号:
1404084 - 财政年份:2014
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant
CPS: Breakthrough: Collaborative Research: Cyber-Physical Manipulation (CPM): Locating, Manipulating, and Retrieving Large Objects with Large Populations of Robots
CPS:突破:协作研究:网络物理操纵(CPM):用大量机器人定位、操纵和检索大型物体
- 批准号:
1330036 - 财政年份:2013
- 资助金额:
$ 6.04万 - 项目类别:
Standard Grant














{{item.name}}会员




