Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry

合作研究:通过界面结构和化学控制二维材料的热性能

基本信息

  • 批准号:
    2400352
  • 负责人:
  • 金额:
    $ 35.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Nontechnical DescriptionAny owner of a mobile phone or laptop computer knows how hot they can get when being used. This is why electronic devices are engineered to shed heat and reduce the temperature under operation. This problem is critical at the nanoscale, where it is necessary to control thermal conduction at boundaries between different materials and components. Consider two-dimensional (2D) materials such as graphene, which have shown great promise. These consist of layers of atoms that are tightly bound in the plane and weakly bound between layers. If heat cannot be efficiently transported between layers, there would be significant limits to the use of 2D materials in next generation electronics. On the other hand, a strong thermal boundary could provide the potential for remarkable materials with thermal isolation better than air. The need to understand and control thermal boundary conductance at 2D-2D interfaces and between 2D and bulk materials motivates this project. Investigators will manipulate the thermal properties of 2D materials through changes in their interface structure and chemistry. Investigators will study how to control physical coupling and the effect of novel heat transfer mechanisms. An integral part of this project will be to develop experiential education programs for underrepresented students at the University of Texas at Dallas, the Carnegie Institute of Washington, and local high schools and community colleges. The researchers will work with local museums to develop new artwork conservation programs using optical techniques such as Raman spectroscopy.Technical DescriptionA major gap in the present knowledge of thermal boundary conductance (TBC) is how it can be manipulated by changing the structure of 2D-2D and 2D-bulk interfaces. As these interfaces are often set when the sample is fabricated, only a subset of structure-property relationships has been investigated, and often across disparate samples subject to the variation common to 2D materials. This project is applying extreme pressure within a diamond anvil cell as a new technique for broadly changing the structure of the same interface while measuring the TBC. This is allowing researchers to decode fundamental knowledge on the structure-property relationships for the TBC while also gaining insights into practical pathways for manipulating the thermal properties of 2D materials and thermal limitations of 2D devices. Specific structural and chemical changes at the interface include (1) the increase of physical coupling, (2) the transition from nonbonded to bonded chemistry, and (3) the onset of new phononic and nonphononic heat transfer mechanisms. Raman spectroscopy at optical wavelengths is being used to simultaneously characterize the interface and measure the TBC. The measurements are backed by first-principles modeling and molecular dynamics simulations. In addition to the TBC, these models are allowing researchers to identify renormalizations of the phonon dispersion and scattering, which can affect many phonon-limited areas of energy transport and conversion in 2D materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述任何手机或笔记本电脑的所有者都知道它们在使用时会变得多热。这就是电子设备被设计成散热和降低运行温度的原因。这个问题在纳米尺度上是至关重要的,在纳米尺度上,需要控制不同材料和组件之间的边界处的热传导。以石墨烯等二维(2D)材料为例,它们已经显示出巨大的前景。这些原子层由紧密结合在平面内的原子层组成,层与层之间的结合很弱。如果热量不能在层与层之间有效传输,2D材料在下一代电子产品中的使用将受到很大限制。另一方面,强大的热边界可以为具有比空气更好的隔热性能的卓越材料提供潜力。了解和控制2D-2D界面以及2D和散体材料之间的热边界导热的需要促使了该项目的开展。研究人员将通过改变2D材料的界面结构和化学成分来操纵其热性能。研究人员将研究如何控制物理耦合和新的热传递机制的影响。该项目的一个组成部分将是为德克萨斯大学达拉斯分校、华盛顿卡内基学院以及当地高中和社区大学的代表不足的学生开发体验式教育项目。研究人员将与当地博物馆合作,利用拉曼光谱等光学技术开发新的艺术品保护计划。技术描述目前关于热边界电导(TBC)的知识中的一个主要缺口是如何通过改变2D-2D和2D-主体界面的结构来操纵它。由于这些界面通常是在制造样品时设置的,因此只研究了结构-性能关系的一个子集,而且通常是跨不同的样品,受到2D材料常见的变化的影响。该项目是在钻石顶压室内施加极压,作为一种在测量TBC的同时广泛改变同一界面结构的新技术。这使研究人员能够破译TBC结构-性质关系的基本知识,同时还可以深入了解操纵2D材料的热性质和2D设备的热限制的实际途径。界面的特殊结构和化学变化包括(1)物理耦合的增加,(2)从非键化学向键化学的转变,以及(3)新的声子和非声子热传递机制的开始。光学波长的拉曼光谱被用来同时表征界面和测量TBC。这些测量得到了第一性原理建模和分子动力学模拟的支持。除了TBC,这些模型还允许研究人员识别声子弥散和散射的重整化,这可能会影响2D材料中许多声子有限的能量传输和转换区域。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Brenner其他文献

Integration of a dual-mode catheter for ultrasound image guidance and HIFU ablation using a 2-D CMUT array
使用 2-D CMUT 阵列集成用于超声图像引导和 HIFU 消融的双模导管
  • DOI:
    10.1109/ultsym.2017.8091627
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji Hoon Jang;Chienliu Chang;M. Rasmussen;A. Moini;Kevin Brenner;D. Stephens;Ömer Oralkan;B. Khuri
  • 通讯作者:
    B. Khuri

Kevin Brenner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Brenner', 18)}}的其他基金

Strain Effects in Transition Metal Dichalcogenide Field-Effect Transistors
过渡金属二硫族化物场效应晶体管中的应变效应
  • 批准号:
    2335713
  • 财政年份:
    2023
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
Strain Effects in Transition Metal Dichalcogenide Field-Effect Transistors
过渡金属二硫族化物场效应晶体管中的应变效应
  • 批准号:
    2211673
  • 财政年份:
    2022
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Confocal Micro-Raman Spectrometer
MRI:购买共焦显微拉曼光谱仪
  • 批准号:
    2117574
  • 财政年份:
    2021
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
SBIR Phase I: Graphene On-Chip Interconnects
SBIR 第一阶段:石墨烯片上互连
  • 批准号:
    1315042
  • 财政年份:
    2013
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Manipulating the Thermal Properties of Two-Dimensional Materials Through Interface Structure and Chemistry
合作研究:通过界面结构和化学控制二维材料的热性能
  • 批准号:
    2400353
  • 财政年份:
    2024
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
  • 批准号:
    1804843
  • 财政年份:
    2018
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and manipulating the solvent microenvironment for selective, catalytic amination of renewable oxygenates
合作研究:了解和操纵溶剂微环境,用于可再生含氧化合物的选择性催化胺化
  • 批准号:
    1805307
  • 财政年份:
    2018
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Continuing Grant
CRCNS Research Proposal: Collaborative Research: Modeling and Manipulating Dynamic Network Activity in the Brain
CRCNS 研究提案:协作研究:建模和操纵大脑中的动态网络活动
  • 批准号:
    1822553
  • 财政年份:
    2018
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
CRCNS Research Proposal: Collaborative Research: Modeling and Manipulating Dynamic Network Activity in the Brain
CRCNS 研究提案:协作研究:建模和操纵大脑中的动态网络活动
  • 批准号:
    1822606
  • 财政年份:
    2018
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating Epigenetic Mechanisms to Enhance Non-Viral Transgene Expression
合作研究:操纵表观遗传机制以增强非病毒转基因表达
  • 批准号:
    1403214
  • 财政年份:
    2014
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Manipulating Epigenetic Mechanisms to Enhance Non-Viral Transgene Expression
合作研究:操纵表观遗传机制以增强非病毒转基因表达
  • 批准号:
    1404084
  • 财政年份:
    2014
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
CPS: Breakthrough: Collaborative Research: Cyber-Physical Manipulation (CPM): Locating, Manipulating, and Retrieving Large Objects with Large Populations of Robots
CPS:突破:协作研究:网络物理操纵(CPM):用大量机器人定位、操纵和检索大型物体
  • 批准号:
    1330036
  • 财政年份:
    2013
  • 资助金额:
    $ 35.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了