Collaborative Research: Multimodal State Estimation through Neural Coherence in the Parieto-Frontal Network

合作研究:通过顶额网络中的神经一致性进行多模态状态估计

基本信息

  • 批准号:
    1558151
  • 负责人:
  • 金额:
    $ 127.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

To distinguish parts of our body from other objects around us, the brain needs to build an internal image of our body by merging information from the skin, muscles and joints with information from our eyes. This project is aimed at characterizing how we build our sense of self, by using multisite brain recordings and virtual reality technologies. The results will impact national needs in the consumer, healthcare, military, and industrial settings by advancing the fundamental engineering and neuroscience knowledge necessary to create the next generation of brain-machine interfaces, which are envisioned to support the integration of artificial and natural sensory information. Optimizing these systems depends critically on understanding how natural sensory signals interact within and among brain areas, a knowledge gap that directly addressed by this project. The educational goals associated with the project are designed to advance discovery and understanding of engineering and neuroscience, while also promoting teaching, training, and learning beyond the regular bounds of these disciplines. These goals are achieved by: 1) Engaging high school students underrepresented in STEM fields through the development of hands-on instructional modules, 2) Promoting interdisciplinary undergraduate research opportunities via internships at Arizona State University, 3) Mentoring students in the broader implications of scientific research through exposure to organizations engaged in the ethical, societal, and policy implications of neuroscience research, and 4) Engaging the public in scientific discourse through public lectures and exhibits, and thereby promoting broad dissemination of the work to enhance scientific and technological understanding.Estimating the state of the body through the integration of available sensory cues (multimodal state estimation) is a critical integrative function for most organisms. Although much is known about state estimation for the upper limb at the behavioral level, the underlying neural mechanisms remain poorly understood in cortical areas, particularly at the network level. This is due to several factors: 1) the cortical areas believed to play a role in limb state estimation are heterogenous with regard to the relative strength of their sensory inputs and display both multisensory enhancement and suppression depending on context; 2) technical limitations mean functional interactions among these areas have been challenging to characterize; 3) the relation between sensitivity to visual and somatic cues and prevailing computational theories of multisensory integration have been incompletely explored; 4) multimodal areas are thought to contribute to both perceptual and action-based body representations but how these representations interact at the neural and behavioral levels is not well understood. As a result, it is unclear how a coherent multimodal estimate of the state of the upper limb is constructed and maintained. The proposed series of studies address these issues by quantifying changes in neural spiking, local field potentials, and neural coherence within and among fronto-parietal areas of the monkey implicated in state estimation using virtual reaching tasks that alter the reliability and semantic information of visual cues.
为了将我们身体的各个部分与周围的其他物体区分开来,大脑需要将来自皮肤、肌肉和关节的信息与来自眼睛的信息融合起来,从而构建出我们身体的内部图像。 该项目旨在通过使用多点大脑记录和虚拟现实技术来描述我们如何建立自我意识。 研究结果将通过推进创建下一代脑机接口所需的基础工程和神经科学知识来影响消费者,医疗保健,军事和工业环境中的国家需求,这些接口被设想为支持人工和自然感官信息的整合。 优化这些系统关键取决于理解自然感觉信号如何在大脑区域内部和之间相互作用,这是该项目直接解决的知识差距。 与该项目相关的教育目标旨在促进工程和神经科学的发现和理解,同时也促进教学,培训和学习超越这些学科的常规界限。实现这些目标的途径是:1)通过开发实践教学模块,吸引在STEM领域代表性不足的高中生,2)通过在亚利桑那州立大学实习,促进跨学科本科生研究机会,3)通过接触从事神经科学研究的伦理,社会和政策影响的组织,指导学生了解科学研究的更广泛影响,(4)通过公开讲座和展览让公众参与科学讨论,从而促进工作的广泛传播,以提高科学和技术的理解。通过整合可用的感觉线索(多模态状态估计)来估计身体的状态是大多数生物体的关键整合功能。 虽然在行为水平上对上肢的状态估计有很多了解,但在皮层区域,特别是在网络水平上,对潜在的神经机制仍然知之甚少。 这是由于以下几个因素:1)被认为在肢体状态估计中起作用的皮层区域在其感觉输入的相对强度方面是异质的,并且根据上下文显示多感觉增强和抑制; 2)技术限制意味着这些区域之间的功能相互作用具有挑战性; 3)视觉和躯体线索敏感性与多感觉整合的计算理论之间的关系尚未得到充分的探讨; 4)多模态区域被认为有助于感知和行动-基于身体表征,但这些表征如何在神经和行为水平上相互作用还没有很好地理解。 因此,尚不清楚如何构建和维持上肢状态的相干多模态估计。 拟议的一系列研究解决这些问题,通过量化的变化,神经尖峰,局部场电位,神经连贯性内和之间的额顶叶地区的猴子牵连在状态估计使用虚拟达到任务,改变视觉线索的可靠性和语义信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Buneo其他文献

Emotion Recognition in Virtual Reality: Investigating the Effect of Gameplay Variations on Affective Responses
虚拟现实中的情感识别:研究游戏玩法变化对情感反应的影响

Christopher Buneo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Buneo', 18)}}的其他基金

CAREER: Characterizing Neural Mechanisms of State Estimation in the Posterior Parietal Cortex
职业:表征后顶叶皮层状态估计的神经机制
  • 批准号:
    0746398
  • 财政年份:
    2008
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
  • 批准号:
    2231077
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
  • 批准号:
    2231078
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
  • 批准号:
    2334665
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimodal Mapping of Gene Isoforms by Electromicrofluidic Manipulation
合作研究:通过电微流体操作进行基因异构体的多模式图谱
  • 批准号:
    2303927
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Multimodal Mapping of Gene Isoforms by Electromicrofluidic Manipulation
合作研究:通过电微流体操作进行基因异构体的多模式图谱
  • 批准号:
    2303926
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
  • 批准号:
    2327710
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
  • 批准号:
    2327711
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: Data-driven multimodal methods for behavior-based epidemiological modeling
合作研究:IHBEM:基于行为的流行病学建模的数据驱动多模式方法
  • 批准号:
    2327709
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Deep Learning-based Multimodal Analysis of Sleep
合作研究:EAGER:基于深度学习的睡眠多模态分析
  • 批准号:
    2334666
  • 财政年份:
    2023
  • 资助金额:
    $ 127.15万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Assessment of Cognitive Decline using Multimodal Neuroimaging with Embedded Artificial Intelligence
合作研究:SCH:使用多模态神经影像和嵌入式人工智能评估认知衰退
  • 批准号:
    10438005
  • 财政年份:
    2022
  • 资助金额:
    $ 127.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了