DRMS: Improving Public Response to Weather Warnings

DRMS:改善公众对天气警报的响应

基本信息

  • 批准号:
    1559126
  • 负责人:
  • 金额:
    $ 38.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Despite improvements in weather forecasts both in terms of timeliness and accuracy, weather-related injury and death remain a serious problem. There is growing consensus that at least part of the problem is public distrust in the warnings themselves. This project investigates three psychological issues related to public distrust in weather warnings. The first has to do with inconsistency. Forecasts for high-impact weather events are often made days in advance to allow residents time to prepare. Subsequent forecasts for the same event may differ from earlier forecasts, giving the impression of inconsistency. Forecasters tend to assume that people distrust inconsistent forecasts and are reluctant to change forecasts even when better information becomes available, preferring to sacrifice accuracy for consistency. This project tests whether inconsistency or inaccuracy is more injurious to trust. Distrust may also arise from the fact that severe weather events are usually presented as certain because forecasters worry that admitting uncertainty signals incompetence. Most people, however, understand that weather prediction involves some level of uncertainty. Therefore too much certainty may seem implausible. This project tests whether adding an uncertainty estimate (e.g. the probability of a tornedo at your location) increases or decreases trust and compliance with warnings. Finally, distrust in warning forecasts may lead to delaying precautionary action in order to gather more information. If people wait too long, they may not have enough time to adequately protect themselves before severe weather hits. This project will determine the appropriate information to include in weather warnings to inspire trust and allow people to make timely decisions. Thus, the results of this project will influence forecast communication practices to provide people with better and more trustworthy information upon which to base critical weather related decisions, ultimately saving lives. The value of accurate weather warnings with generous lead times will be realized only if the public trusts them and acts accordingly. This research will inform "best practices" in warning communication procedures to promote both trust in the forecast and timely responses. As such, results of this work may well improve compliance with warnings and save lives.The research team investigates these issues in experimental studies, using realistic weather-related decision tasks. Establishing the hypothesized effects on trust and decisions in a controlled laboratory environment will permit testing forecast communication methods to address them. Of particular interest is the inclusion of specific uncertainty estimates. Conveying the notion that the forecast was intended as probabilistic may reduce effects of both inconsistency and inaccuracy. Uncertainty estimates may also attenuate delay beyond optimal stopping by satisfying the need for additional information. Likelihood communication, however, may need to be simplified in dynamic, time pressured situations so color coded risk scales will also be tested. Thus, these experiments will compare identical situations in which people receive either probabilistic forecasts, color-codes or conventional warnings, to determine which method leads to greater trust and better decisions. In sum, the goal is to carve out answers to a set of specific but critical questions, using careful experimental procedures that make direct comparisons between one situation and another and one form of communication and another, holding all other factors constant to yield firm conclusions about their effects. It is a cognitive-experimental approach to what has heretofore been a problem tackled primarily with other social science tools. This work will benefit the scientific community at large by providing a unique theoretical understanding of the cognitive processes involved in interpreting, trusting and acting on complex and dynamic predictions, with implications in diverse domains.
尽管天气预报在及时性和准确性方面都有所改善,但与天气有关的伤亡仍然是一个严重的问题。越来越多的人达成共识,认为问题至少有一部分是公众对警告本身的不信任。这个项目调查了与公众对天气警告的不信任有关的三个心理问题。第一个问题与前后不一致有关。对高影响天气事件的预报通常是提前几天做出的,以便居民有时间做好准备。对同一事件的后续预测可能与早先的预测不同,给人一种不一致的印象。预测者倾向于认为,人们不信任不一致的预测,即使有更好的信息,也不愿改变预测,宁愿牺牲准确性来换取一致性。这个项目测试的是不一致还是不准确对信任的伤害更大。不信任还可能源于这样一个事实,即恶劣天气事件通常被认为是确定的,因为天气预报员担心承认不确定性意味着无能。然而,大多数人都明白,天气预报包含一定程度的不确定性。因此,太多的确定性似乎是不可信的。该项目测试添加不确定性估计(例如,您所在位置发生龙卷风的概率)是否会增加或降低对警告的信任和遵从性。最后,对预警预报的不信任可能会导致为了收集更多信息而推迟采取预防行动。如果人们等待的时间太长,他们可能没有足够的时间在恶劣天气来袭之前充分保护自己。该项目将确定天气警告中要包含的适当信息,以激发信任并使人们能够及时做出决定。因此,该项目的结果将影响预报通信实践,为人们提供更好、更可信的信息,作为与关键天气有关的决策的基础,最终拯救生命。只有在公众信任并采取相应行动的情况下,才能实现具有充足准备时间的准确天气警报的价值。这项研究将为警示沟通程序中的“最佳做法”提供信息,以促进对预测和及时反应的信任。因此,这项工作的结果可能会很好地改善对警告的遵守情况,并拯救生命。研究小组在实验研究中使用与天气有关的现实决策任务来研究这些问题。在受控的实验室环境中建立对信任和决策的假设影响将允许测试、预测和沟通方法来解决这些问题。特别令人感兴趣的是列入了具体的不确定性估计。传达这样一种概念,即预测是以概率为目的的,可能会减少不一致和不准确的影响。不确定性估计还可以通过满足对额外信息的需求来衰减超出最优停止的延迟。然而,在动态、时间紧迫的情况下,可能性沟通可能需要简化,因此也将测试颜色编码的风险等级。因此,这些实验将比较人们收到概率预测、色码或常规警告的相同情况,以确定哪种方法会带来更大的信任和更好的决定。总而言之,我们的目标是找到一系列具体但关键问题的答案,使用仔细的实验程序,在一种情况和另一种情况之间进行直接比较,并保持所有其他因素不变,以得出关于它们的影响的确切结论。这是一种认知-实验方法,解决了迄今为止主要用其他社会科学工具解决的问题。这项工作将对涉及不同领域的复杂和动态预测的解释、信任和行动所涉及的认知过程提供独特的理论理解,从而使整个科学界受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Joslyn其他文献

Factors Influencing Delayed Hospital Presentation in Patients with Appendicitis
  • DOI:
    10.1016/j.jamcollsurg.2016.06.223
  • 发表时间:
    2016-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anne P. Ehlers;Frederick T. Drake;Meera Kotagal;Vlad V. Simianu;Nidhi Agrawal;Susan Joslyn;David R. Flum
  • 通讯作者:
    David R. Flum

Susan Joslyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Joslyn', 18)}}的其他基金

Perception of Climate Change
对气候变化的看法
  • 批准号:
    1430781
  • 财政年份:
    2014
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant
Communicating Weather Forecast Uncertainty and Improved Decision-Making Under Risk
传达天气预报的不确定性并改进风险下的决策
  • 批准号:
    1023354
  • 财政年份:
    2010
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Standard Grant
DRU: A Multi-disciplinary Approach to Communicating Weather Forecast Uncertainty
DRU:传达天气预报不确定性的多学科方法
  • 批准号:
    0724721
  • 财政年份:
    2007
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A National Multidisciplinary Priority-Setting Summit: Grab bar installation as a public health solution for preventing falls, reducing injury and improving bathroom accessibility for older adults in Canada
全国多学科优先事项峰会:安装扶手作为公共卫生解决方案,可预防跌倒、减少伤害并改善加拿大老年人的卫生间无障碍环境
  • 批准号:
    480820
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Miscellaneous Programs
Improving Public Awareness and Driving Multi-level Action on the Causes of Poverty to Support Financial Wellbeing
提高公众意识并推动针对贫困根源的多层次行动以支持金融福祉
  • 批准号:
    485645
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Miscellaneous Programs
SBIR Phase II: Improving fleet operational metrics through service optimization with automated learning of vehicle energy performance models for zero-emission public transport
SBIR 第二阶段:通过服务优化和自动学习零排放公共交通的车辆能源性能模型来改善车队运营指标
  • 批准号:
    2220811
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Cooperative Agreement
NSF-SSRC: An Intention-Action Framework for Improving the Impact of Public Health Initiatives
NSF-SSRC:提高公共卫生举措影响力的意向行动框架
  • 批准号:
    2317430
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Continuing Grant
Improving public engagement for maximised benefits of forest and woodland expansion and creation
提高公众参与度,实现森林和林地扩张和创造效益最大化
  • 批准号:
    NE/Y004167/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Research Grant
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
  • 批准号:
    468864
  • 财政年份:
    2022
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Operating Grants
Statistical Methods for Improving Real-Time Public Health Surveillance and Integrated Outbreak Detection
改进实时公共卫生监测和综合疫情检测的统计方法
  • 批准号:
    10682401
  • 财政年份:
    2022
  • 资助金额:
    $ 38.81万
  • 项目类别:
Infectious Disease Genomic Contextual Data Harmonization: Improving Public Health Investigations via User-Engagement, Ontologies, and Open Data Specifications
传染病基因组背景数据协调:通过用户参与、本体论和开放数据规范改进公共卫生调查
  • 批准号:
    475749
  • 财政年份:
    2022
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Studentship Programs
Improving public awareness of the vulnerability of fingerprint authentication by establishing methods for evaluating presentation attacks and detection performance
通过建立评估演示攻击和检测性能的方法,提高公众对指纹认证漏洞的认识
  • 批准号:
    22K21314
  • 财政年份:
    2022
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Improving public transport ridership through a better understanding of transport accessibility, transit service quality and users' perceptions
通过更好地了解交通可达性、交通服务质量和用户的看法来提高公共交通乘客量
  • 批准号:
    RGPIN-2019-06032
  • 财政年份:
    2022
  • 资助金额:
    $ 38.81万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了