Using Topology Optimization to Reduce Support Structures in Additive Manufacturing

使用拓扑优化来减少增材制造中的支撑结构

基本信息

  • 批准号:
    1561899
  • 负责人:
  • 金额:
    $ 32.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-05-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

Additive manufacturing represents a class of processes for fabricating parts of virtually any shape through material addition. The technique, often called 3D printing, offers several advantages over traditional manufacturing, and has the potential to revolutionize the way things are made. However, to fully exploit additive manufacturing, new design methods are needed. This award supports fundamental research towards developing a design framework for additive manufacturing. The design framework will not only consider traditional performance metrics but also additive manufacturing constraints. Specifically, the award will focus on the reduction of the sacrificial support structures needed to additively manufacture parts with geometric overhangs. By departing from conventional practice for support-structure design, the project's integrated approach will lead to low-cost products, benefitting the U.S. economy and society. Developing the framework involves several disciplines including design, manufacturing, and computer science. The research will help broaden participation of underrepresented groups and positively impact engineering education.This research will leverage topology optimization theory to integrate performance metrics and additive manufacturing constraints. For example, it will help minimize the compliance of the part, while respecting support structure constraints. The framework will be sufficiently general to accommodate a variety of performance metrics such as compliance, stress, and buckling, and a variety of additive manufacturing constraints such as support structures, surface roughness, and fabrication time. Robust level-set methods of topology optimization will be combined with augmented Lagrangian formulations to create a design framework that will then be integrated into these existing computer aided design systems and made available to the public. Experimental calibration and validation will be carried out to support the theory. The focus will largely be on polymer fused deposition modeling since this process is both inexpensive and easily accessible. However, experiments will also be carried out on metal additive manufacturing to establish the broader implications of the findings.
增材制造代表了通过材料添加制造几乎任何形状零件的一类工艺。这项技术通常被称为3D打印,与传统制造相比,它有几个优势,并有可能彻底改变产品的制造方式。然而,为了充分利用增材制造,需要新的设计方法。该奖项支持开发增材制造设计框架的基础研究。设计框架不仅要考虑传统的性能指标,还要考虑增材制造的限制。具体而言,该合同将侧重于减少增材制造具有几何悬垂的零件所需的牺牲支撑结构。与传统的支撑结构设计不同,该项目的综合方法将导致低成本产品,使美国经济和社会受益。开发该框架涉及多个学科,包括设计、制造和计算机科学。这项研究将有助于扩大代表性不足群体的参与,并对工程教育产生积极影响。本研究将利用拓扑优化理论来整合性能指标和增材制造约束。例如,它将有助于最小化零件的顺应性,同时尊重支撑结构的约束。该框架将足够通用,以适应各种性能指标,如顺应性、应力和屈曲,以及各种增材制造限制,如支撑结构、表面粗糙度和制造时间。鲁棒的水平集拓扑优化方法将与增强拉格朗日公式相结合,以创建一个设计框架,然后将其集成到这些现有的计算机辅助设计系统中,并向公众提供。将进行实验校准和验证以支持理论。重点将主要放在聚合物熔融沉积建模上,因为这种方法既便宜又容易获得。然而,还将对金属增材制造进行实验,以确定研究结果的更广泛影响。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Support structure constrained topology optimization for additive manufacturing
  • DOI:
    10.1016/j.cad.2016.08.006
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Mirzendehdel, Amir M.;Suresh, Krishnan
  • 通讯作者:
    Suresh, Krishnan
Strength-based topology optimization for anisotropic parts
  • DOI:
    10.1016/j.addma.2017.11.007
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Mirzendehdel, Amir M.;Rankouhi, Behzad;Suresh, Krishnan
  • 通讯作者:
    Suresh, Krishnan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Krishnan Suresh其他文献

TCTAP C-043 Is It Dissection or Plaque Migration Proximally Following Left Anterior Descending Artery Stenting?
  • DOI:
    10.1016/j.jacc.2015.03.315
  • 发表时间:
    2015-05-05
  • 期刊:
  • 影响因子:
  • 作者:
    Krishnan Suresh;Arshad Mushahafil
  • 通讯作者:
    Arshad Mushahafil
Treetop: topology optimization using constructive solid geometry trees
  • DOI:
    10.1007/s00158-025-03980-6
  • 发表时间:
    2025-02-27
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Rahul Kumar Padhy;Pramod Thombre;Krishnan Suresh;Aaditya Chandrasekhar
  • 通讯作者:
    Aaditya Chandrasekhar
Deformation constrained support-structure optimization for laser powder bed fusion
  • DOI:
    10.1016/j.addma.2024.104294
  • 发表时间:
    2024-06-05
  • 期刊:
  • 影响因子:
  • 作者:
    Subodh C. Subedi;Dan J. Thoma;Krishnan Suresh
  • 通讯作者:
    Krishnan Suresh
CAD-integrated analysis of 3-D beams: a surface-integration approach
  • DOI:
    10.1007/s00366-010-0191-9
  • 发表时间:
    2010-07-30
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Wa’el Abdel Samad;Krishnan Suresh
  • 通讯作者:
    Krishnan Suresh
Optimal Box Contraction for Solving Linear Systems via Simulated and Quantum Annealing
通过模拟和量子退火求解线性系统的最佳盒子收缩
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sanjay Suresh;Krishnan Suresh
  • 通讯作者:
    Krishnan Suresh

Krishnan Suresh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Krishnan Suresh', 18)}}的其他基金

Predicting the Benefits of Topology Optimization
预测拓扑优化的好处
  • 批准号:
    1824980
  • 财政年份:
    2018
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research: A Robust Framework for Overcoming the Tangled Mesh Problem
AF:小型:协作研究:克服网格缠结问题的稳健框架
  • 批准号:
    1715970
  • 财政年份:
    2017
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Generalization of Non-Uniform Rational Bezier Splines: Theory and Applications
非均匀有理贝塞尔样条的推广:理论与应用
  • 批准号:
    1661597
  • 财政年份:
    2017
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Design Optimization on the Cloud
PFI:AIR - TT:云端设计优化
  • 批准号:
    1500205
  • 财政年份:
    2015
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Foundations for Learning, Verifying, and Applying Model Simplification Rules
协作研究:学习、验证和应用模型简化规则的计算基础
  • 批准号:
    1161474
  • 财政年份:
    2012
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
GOALI: A Novel Strategy for Large-Scale Industrial Topology Optimization
GOALI:大规模工业拓扑优化的新策略
  • 批准号:
    1232508
  • 财政年份:
    2012
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation Shape Optimization of Geometrically Complex Artifacts
职业:几何复杂工件的下一代形状优化
  • 批准号:
    0745398
  • 财政年份:
    2008
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Automatic Generation of Context-Dependent Simplified Models to Support Interactive Virtual Assembly
协作研究:自动生成上下文相关的简化模型以支持交互式虚拟装配
  • 批准号:
    0726635
  • 财政年份:
    2007
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Skeletal Reduction of Thin Mechanical Components
薄型机械部件的骨架减少
  • 批准号:
    0322134
  • 财政年份:
    2003
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant

相似海外基金

Development of a design method for high-power ultrasonic transducers using topology optimization
利用拓扑优化开发高功率超声波换能器设计方法
  • 批准号:
    22K03994
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalization of global topology optimization using dimension reduction technology
使用降维技术的全局拓扑优化的推广
  • 批准号:
    22K03874
  • 财政年份:
    2022
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Integrated Design and Digital Fabrication using Topology Optimization and Material Extrusion 3D Printing
职业:使用拓扑优化和材料挤压 3D 打印进行集成设计和数字制造
  • 批准号:
    2045417
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Generation of new three-dimensional structure of permanent magnet motors using topology optimization
利用拓扑优化生成新型永磁电机三维结构
  • 批准号:
    21H01301
  • 财政年份:
    2021
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Topology optimization of auto parts using advanced manufacturing technologies
采用先进制造技术的汽车零部件拓扑优化
  • 批准号:
    543135-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Applied Research and Development Grants - Level 1
Part Consolidation for Additive Manufacturing using Topology Optimization
使用拓扑优化进行增材制造的零件整合
  • 批准号:
    542995-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
RUI: Robust Feasibility and Robust Optimization using Algebraic Topology and Convex Analysis
RUI:使用代数拓扑和凸分析的鲁棒可行性和鲁棒优化
  • 批准号:
    1819229
  • 财政年份:
    2018
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Standard Grant
Topology optimization of a bicycle storage unit using vectorized problem formulation
使用矢量化问题公式对自行车存储单元进行拓扑优化
  • 批准号:
    514711-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Engage Grants Program
Development of multi-phase topology optimization method using CMA-ES and its application to optical devices
CMA-ES多相拓扑优化方法的发展及其在光器件中的应用
  • 批准号:
    17K17778
  • 财政年份:
    2017
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Optimization method for sound-absorbing poroelastic media by using homogenization method and topology optimization method
均质化和拓扑优化法吸声多孔弹性介质的优化方法
  • 批准号:
    17K06238
  • 财政年份:
    2017
  • 资助金额:
    $ 32.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了