Collaborative Research: Mechanics of Tension-Induced Adaptation in Clathrin-Mediated Endocytosis

合作研究:网格蛋白介导的内吞作用中张力诱导的适应机制

基本信息

  • 批准号:
    1562043
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Transport of macromolecules into cells occurs via a collection of pathways, commonly referred to as endocytosis. These pathways are characterized by a chain of remodeling events during which an almost flat patch of plasma membrane is transformed into a cargo-carrying closed vesicle. The most commonly used pathway is called clathrin-mediated endocytosis (CME) which is important for the exchange of lipids and proteins between the plasma membrane and organelles. As such, CME is critical for maintaining the organization of the plasma membrane and regulating various cellular processes. Recent research on CME suggests that cells sense the mechanical environment by adapting the protein machinery to ensure successful CME. How cells sense and adapt to the mechanical environment to maintain cellular transport is not well understood. The goal of this project is to gain mechanistic insights into this dynamic adaptation in cells via combined theoretical and experimental approaches. Since cells experience varied mechanical environments in different diseased states, this work can provide fundamental insights into cellular transport in diseased cells that can help facilitate the design of improved nanoparticle-based drugs.This work will offer a physical explanation for the observed "mechanosensitivity" and tension-based adaptation in clathrin-mediated endocytosis. To achieve this objective, continuum mechanics and Monte Carlo simulations of membrane-protein interactions will be complimented with high-resolution live cell and super-resolution fluorescence microscopy to test the competing explanations for assembly of membrane-associated proteins and tension-induced adaptation in CME. This study will address two major debates in the endocytosis literature. First, it will identify the energetically optimal mechanism by which clathrin drives membrane curvature. Second, it will identify the mechanism by which membrane senses tension and recruits actin filaments for driving vesicle growth. The numerical and experimental findings will quantify the extent to which the key membrane-remodeling proteins can counter tension and drive vesicle growth. Overall, these findings would reveal the general principles by which tension regulates the assembly of membrane-remodeling proteins.
大分子进入细胞的转运通过一系列途径发生,通常称为内吞作用。这些途径的特征在于一系列重塑事件,在此过程中,几乎平坦的质膜被转化为携带货物的封闭囊泡。最常用的途径称为网格蛋白介导的内吞作用(CME),其对于质膜和细胞器之间的脂质和蛋白质交换是重要的。因此,CME对于维持质膜的组织和调节各种细胞过程至关重要。最近对CME的研究表明,细胞通过适应蛋白质机制来感知机械环境,以确保成功的CME。细胞如何感知和适应机械环境以维持细胞运输尚不清楚。该项目的目标是通过理论和实验相结合的方法获得对细胞中这种动态适应的机制见解。由于细胞在不同的疾病状态下经历不同的力学环境,这项工作可以提供基本的见解,在病变细胞中的细胞运输,可以帮助促进改进的纳米药物的设计。这项工作将提供一个物理解释观察到的“mechanosensitivity”和张力为基础的适应网格蛋白介导的内吞作用。为了实现这一目标,膜与蛋白质相互作用的连续介质力学和蒙特卡罗模拟将与高分辨率活细胞和超分辨率荧光显微镜相结合,以测试对CME中膜相关蛋白质组装和张力诱导适应的竞争性解释。这项研究将解决两个主要的争论在内吞作用的文献。首先,它将确定网格蛋白驱动膜曲率的能量最佳机制。第二,它将确定膜的机制,通过它来感受张力和招募肌动蛋白丝来驱动囊泡生长。数值和实验结果将量化关键膜重塑蛋白可以对抗张力和驱动囊泡生长的程度。总的来说,这些发现将揭示张力调节膜重塑蛋白组装的一般原则。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymmetric lipid bilayers from the perspective of three-dimensional liquid crystal theory
三维液晶理论视角下的不对称脂质双层
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashutosh Agrawal其他文献

A Monte Carlo Framework for Modeling Protein Assembly on Lipid Membranes
  • DOI:
    10.1016/j.bpj.2019.11.3049
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Carlos A. Osorio Merea;Ashutosh Agrawal
  • 通讯作者:
    Ashutosh Agrawal
Mechanics of membrane–membrane adhesion
膜-膜粘附力学
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashutosh Agrawal
  • 通讯作者:
    Ashutosh Agrawal
Anisotropic spontaneous curvatures in lipid membranes.
脂质膜中的各向异性自发曲率。
Electromechanics of lipid-modulated gating of Kv channels
Kv 通道脂质调节门控的机电学
  • DOI:
    10.1101/2020.06.12.051482
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nidhin Thomas;K. Mandadapu;Ashutosh Agrawal
  • 通讯作者:
    Ashutosh Agrawal
Universal relationships to determine adhesion energy from vesicle-substrate interactions
通过囊泡-底物相互作用确定粘附能的通用关系
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Irajizad;Ashutosh Agrawal
  • 通讯作者:
    Ashutosh Agrawal

Ashutosh Agrawal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashutosh Agrawal', 18)}}的其他基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Electro-Mechanical Interactions in Biological Membranes
合作研究:生物膜中的机电相互作用
  • 批准号:
    1931084
  • 财政年份:
    2019
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Biophysical and Molecular Mechanisms of Ultrafast Endocytosis at Neuronal Synapses
合作研究:神经元突触超快内吞作用的生物物理和分子机制
  • 批准号:
    1727271
  • 财政年份:
    2017
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of the Cell Nucleus Lipid Bilayers
合作研究:细胞核脂质双层的力学
  • 批准号:
    1437330
  • 财政年份:
    2014
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331295
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336135
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331296
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The impact of instruction on student thinking about measurement in classical and quantum mechanics experiments
合作研究:教学对学生思考经典和量子力学实验中的测量的影响
  • 批准号:
    2336136
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323414
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2323727
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了