Multiscale Mechanisms of Force Transfer in Tendon
肌腱力传递的多尺度机制
基本信息
- 批准号:1562107
- 负责人:
- 金额:$ 32.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tendons are soft tissues that connect between muscles and bones to serve two key functions for joints: provide mechanical stability and enable seamless mobility. Tendon injuries are very common and are difficult to treat successfully, in part because of the limited understanding of how mechanical loads transfer through the structures within tendons. Forces applied at the large-scale are transmitted down to the level of cells, which changes the tendon responds biologically. Unfortunately, it remains unclear which components within the complex tendon structure are responsible for force transfer. At the smallest level a tendon has long collagen molecules connected together by other molecule one group of which is flexible and another that is quite stiff. The relative amount of stiff and flexible connections between the collagen molecules determines how strong and stiff the tendon is. However, how the two types of molecular linkages interact to make the tendon strong and stiff mechanically is not properly understood. This gap in knowledge has made it difficult to completely determine how healthy tendons function and how their force-transmission capabilities change after injury. The project will measure the properties of tendons with different amounts of the two linker types and create a model of the tendon built up from the molecular level in order to understand how it functions mechanically at a very basic level. The better model for the tendon has the potential to benefit society by reducing pain, disability, and healthcare costs associated with tendon injuries. This research project includes a number of educational goals. Among them is to build an interactive class section on how mechanics is important in understanding biological materials for a K-12 audience to attract students into STEM fields. Another is to improve a graduate biomechanics course using fundamental concepts of multi-scale mechanics such as are used in this research project. The advanced material in that improved course will train the next generation of scientists needed to continue research in the area. The objective of this project is to determine the role of two specific linking components in tendon mechanics: enzymatic collagen crosslinks and elastic fibers. These tissue constituents are important for mechanical load carriage in tendon, however how they change mechanical properties is not understood in a detailed way. This project will use a combined experimental and computational approach to determine the multiscale mechanical role of these linking components in tendon. Animal models of altered collagen crosslinks and impaired elastic fiber assemblies will be evaluated using biomechanical testing combined with two-photon microscopy and polarized light imaging. Experiments will be complemented with a collagen network computational model to determine individual and coupled mechanical effects of linking components, and evaluate hypotheses on force transmission across length scales. This study will greatly improve understanding of: (1) fundamental tendon mechanics, including the role of linking components across structural levels; (2) effects of complementary or coupled interactions between linking elements; (3) how altered quantities/types of linking components lead to impaired mechanical function; and (4) potential therapeutic applications of controlled modifications to linking components to prevent tissue damage or injury progression. The experimental approach and computational framework provide an excellent system to study fundamental relations that extends to other soft tissues. These concepts could also motivate new ideas in material design and inspire new ways to think about force transfer and assembly of multiscale materials.
肌腱是连接肌肉和骨骼的软组织,为关节提供两个关键功能:提供机械稳定性和实现无缝移动。肌腱损伤非常常见,并且难以成功治疗,部分原因是对机械载荷如何通过肌腱内的结构传递的理解有限。大规模施加的力向下传递到细胞水平,从而改变肌腱的生物反应。不幸的是,目前还不清楚复杂的肌腱结构中的哪些组件负责力传递。在最小的层面上,肌腱有长的胶原蛋白分子通过其他分子连接在一起,其中一组是柔性的,另一组是非常刚性的。 胶原蛋白分子之间刚性和柔性连接的相对数量决定了肌腱的强度和刚度。 然而,这两种类型的分子键如何相互作用,使肌腱的机械强度和刚度还没有得到正确的理解。 这种知识上的差距使得很难完全确定健康的肌腱如何发挥作用以及它们的力传递能力在受伤后如何变化。 该项目将测量具有不同量的两种连接剂类型的肌腱的特性,并创建从分子水平建立的肌腱模型,以便了解它在非常基本的水平上如何机械地发挥作用。 更好的肌腱模型有可能通过减少与肌腱损伤相关的疼痛、残疾和医疗费用来造福社会。该研究项目包括一些教育目标。 其中之一是建立一个互动的课堂部分,介绍力学在理解K-12观众的生物材料方面的重要性,以吸引学生进入STEM领域。另一个是改善研究生生物力学课程使用多尺度力学的基本概念,如在本研究项目中使用。 改进后的课程中的先进材料将培训继续该领域研究所需的下一代科学家。本项目的目的是确定肌腱力学中两种特定连接成分的作用:酶促胶原交联和弹性纤维。这些组织成分对于肌腱中的机械载荷承载是重要的,但是它们如何改变机械特性还没有详细的了解。该项目将使用实验和计算相结合的方法来确定这些连接组件在肌腱中的多尺度力学作用。将使用生物力学测试结合双光子显微镜和偏振光成像来评价改变的胶原交联和受损的弹性纤维组装的动物模型。实验将补充胶原蛋白网络计算模型,以确定连接组件的单独和耦合的机械效应,并评估跨长度尺度的力传递假设。这项研究将大大提高对以下问题的理解:(1)基本肌腱力学,包括连接元件在结构水平上的作用;(2)连接元件之间的互补或耦合相互作用的影响;(3)连接元件的数量/类型如何改变导致机械功能受损;和(4)对连接组分进行受控修饰以防止组织损伤或损伤进展的潜在治疗应用。实验方法和计算框架提供了一个很好的系统来研究延伸到其他软组织的基本关系。这些概念还可以激发材料设计的新想法,并启发思考多尺度材料的力传递和组装的新方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Spencer Lake其他文献
Spencer Lake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Spencer Lake', 18)}}的其他基金
Defining the Role of Elastic Fibers in Tendon Mechanics
定义弹性纤维在肌腱力学中的作用
- 批准号:
2037125 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
Reflected-Light Polarization Imaging to Quantify Tissue Microstructure and Damage
反射光偏振成像量化组织微观结构和损伤
- 批准号:
1761561 - 财政年份:2018
- 资助金额:
$ 32.5万 - 项目类别:
Standard Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Examining the patterns and mechanisms of developmental bias: a major force in evolution and disease
检查发育偏差的模式和机制:进化和疾病的主要力量
- 批准号:
2883502 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Studentship
Generation of Neurons by Force-Mediated Epigenetic Mechanisms through Manipulation of Intrinsic Mechanoregulators
通过操纵内在机械调节器通过力介导的表观遗传机制产生神经元
- 批准号:
10664507 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 32.5万 - 项目类别:
Biophysical Mechanisms of Force Transmission in Cytoskeletal Ensembles
细胞骨架中力传递的生物物理机制
- 批准号:
10672426 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Elucidating biophysical mechanisms for force sensing and control using non-equilibrium statistical mechanics and AI
使用非平衡统计力学和人工智能阐明力传感和控制的生物物理机制
- 批准号:
10501942 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10467144 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
- 批准号:
10610468 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Biophysical Mechanisms of Force Transmission in Cytoskeletal Ensembles
细胞骨架中力传递的生物物理机制
- 批准号:
10795268 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Elucidating biophysical mechanisms for force sensing and control using non-equilibrium statistical mechanics and AI
使用非平衡统计力学和人工智能阐明力传感和控制的生物物理机制
- 批准号:
10673871 - 财政年份:2022
- 资助金额:
$ 32.5万 - 项目类别:
Structural Mechanisms of Cytoskeletal Force-Sensing
细胞骨架力传感的结构机制
- 批准号:
10178249 - 财政年份:2021
- 资助金额:
$ 32.5万 - 项目类别: