Collaborative Research: Guided Discovery of Sustainable Superhard Materials via Bond Optimization

合作研究:通过键优化引导可持续超硬材料的发现

基本信息

  • 批准号:
    1562226
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Superhard, wear resistant materials are widely used by the automotive, aerospace, oil and gas, and any manufacturing industry that relies on drilling, cutting, and grinding. Yet, the synthesis of most materials employed for these applications, such as polycrystalline diamond, require high temperatures and extreme pressures, which escalates their cost. A class of materials known as transition metal borides are more easily processed making them viable alternatives; however, they contain expensive and exceedingly scarce metals. This award supports the fundamental research necessary to discover new, low-cost synthetic processes for novel superhard, wear resistant materials that incorporate earth-abundant elements. Achieving these research goals will require the integration of materials engineering, chemistry, computational physics, and data mining. This coordinated approach will not only lead to higher performance materials but it also has the potential to transform many manufacturing processes by replacing current systems with sustainable, cost-effective alternatives. Further, this award will be used to teach undergraduate and graduate students how to address materials design problems through a multi-disciplinary, holistic picture that includes both performance and resource considerations. Teaching the next generation of STEM students how fundamental chemical research can lead to applied materials engineering is essential for global competitiveness. The development of earth-abundant, superhard materials will employ informatics and computation to screen ternary intermetallic boride and carbide phase space. In combination, this approach will guide the experimental identification of novel crystal structures with outstanding mechanical properties. The research team will develop energy efficient microwave heating, induction heating, and solution-based synthesis to overcome the conventional high temperatures and pressures required to prepare these materials. Additionally, novel mechanochemical experiments using in-situ nanoindentation coupled with IR spectroscopy, in conjunction with first principles electronic structure theory, will establish the fundamental mechanisms of mechanical deformation. These experiments will serve to validate the computationally screened compounds as well as reveal opportunities to optimize chemical bonding interactions further enhancing the mechanical response. The result will inform the future advancement of engineering materials by producing a methodological framework to understand the mechanics of disparate classes of complex inorganic solids.
超硬、耐磨材料被汽车、航空航天、石油和天然气以及任何依赖钻井、切割和磨削的制造业广泛使用。然而,用于这些应用的大多数材料的合成,如多晶钻石,需要高温和极端压力,这增加了成本。一类被称为过渡金属硼化物的材料更容易加工,使它们成为可行的替代品;然而,它们含有昂贵且极其稀缺的金属。该奖项支持必要的基础研究,以发现新的、低成本的合成工艺,以获得包含丰富地球元素的新型超硬、耐磨材料。实现这些研究目标将需要材料工程、化学、计算物理和数据挖掘的整合。这种协调的方法不仅将带来更高性能的材料,而且还有可能通过用可持续的、具有成本效益的替代方案取代现有系统来改变许多制造工艺。此外,这个奖项将被用来教本科生和研究生如何通过包括性能和资源考虑在内的多学科的整体图景来解决材料设计问题。教授下一代STEM学生基础化学研究如何导致应用材料工程对于全球竞争力至关重要。随着地球资源丰富的超硬材料的发展,将利用信息学和计算来筛选三元金属间化合物和碳化物相空间。综合考虑,该方法将指导具有优异力学性能的新型晶体结构的实验鉴定。研究小组将开发高能效的微波加热、感应加热和基于溶液的合成,以克服制备这些材料所需的传统高温和压力。此外,利用原位纳米压痕和红外光谱相结合的新颖的机械力化学实验,结合第一性原理电子结构理论,将建立机械变形的基本机制。这些实验将用于验证通过计算筛选的化合物,并揭示优化化学键相互作用的机会,进一步增强机械响应。这一结果将通过产生一个方法学框架来理解不同类别的复杂无机固体的力学,从而为工程材料的未来发展提供信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Taylor Sparks其他文献

Taylor Sparks的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Taylor Sparks', 18)}}的其他基金

EAGER: SSMCDAT2023: Natural Language Processing and Large Language Models for Automated Extraction of Materials Chemistry Data from Scientific Literature
EAGER:SSMCDAT2023:用于从科学文献中自动提取材料化学数据的自然语言处理和大型语言模型
  • 批准号:
    2334411
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
REU Site: Research Experience in Utah for Sustainable Materials Engineering (ReUSE)
REU 网站:犹他州可持续材料工程(再利用)的研究经验
  • 批准号:
    1950589
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SSMCDAT2020: Solid-State and Materials Chemistry Data Science Hackathon
合作研究:SSMCDAT2020:固态和材料化学数据科学黑客马拉松
  • 批准号:
    1938734
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: SusChEM: Data Mining to Reduce the Risk in Discovering New Sustainable Thermoelectric Materials
职业:SusChEM:通过数据挖掘降低发现新型可持续热电材料的风险
  • 批准号:
    1651668
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
  • 批准号:
    2327136
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2409880
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316306
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: End-User Guided Search and Optimization for Accessible Product Customization and Design
协作研究:HCC:小型:最终用户引导的搜索和优化,以实现无障碍产品定制和设计
  • 批准号:
    2327137
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323469
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316305
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323468
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: HCC: Small: Enabling Efficient Computer Systems for Augmented and Virtual Reality: A Perception-Guided Approach
合作研究:CNS 核心:HCC:小型:为增强现实和虚拟现实启用高效计算机系统:感知引导方法
  • 批准号:
    2225861
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
  • 批准号:
    2141681
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了