Collaborative Research: Compressive Robotic Sensing Systems: Gaining Efficiency through Sparsity in Dynamic Sensing Environments

合作研究:压缩式机器人传感系统:通过动态传感环境中的稀疏性提高效率

基本信息

  • 批准号:
    1562335
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

This project investigates autonomous control and coordination of a group of robots that are tasked to explore, map, or monitor the environment they are in. The project aims to enhance the capabilities of such a group of robots by integrating Compressive Sensing for data compression. Compressive sensing enables robots to quickly extract information from their environment, efficiently communicate that information to each other over a wireless network, and intelligently direct their motion to obtain relevant sensing data in the future. Significant theoretical and technical challenges must be addressed in this project to realize the potential of a compressive robotic sensing system. The project will demonstrate results in two specific applications, (i) driving a group of aerial robots to monitor their environment, (ii) driving robotic micro-probes to measure processes inside a living cell. The project also seeks to disseminate its findings through educational and outreach activities. Results will be incorporated into undergraduate and graduate level courses in control theory at both Boston University and Stanford University. The researchers will also work with high school students and undergraduates through research mentorship programs and through lab demonstrations for visitors.The fundamental goal of the project is to create rigorously analyzed algorithms that take advantage of sparse signal descriptions to create efficient motion plans for a team of sensing robots that monitor the environment. The driving hypothesis is that sparsity can greatly extend the performance of robotic sensing systems by saving battery power, computation, storage, and communication bandwidth---all critically limited resources for robotic platforms. The research team will take a Bayesian approach to Compressive Sensing, which allows for sensing quality to be quantified with information theoretic metrics such as entropy. A receding horizon control approach will be developed for driving robotic sensors to collect the most valuable sensor data, in order to reconstruct a sparse representation of their environment using Compressive Sensing. Such control strategies will be adapted to both static and dynamic environments, and both centralized and distributed solutions will be sought. The concepts developed in this project will be applied to two specific sensing domains: (i) networks of quadrotor sensing robots sensing environmental data and (ii) confocal fluorescence microscopy for three-dimensional imaging of dynamics in bio-molecular systems. These two application domains have radically different length and time scales, dynamical properties, and information content. A successful application of the ideas developed in this project to both these domains will prove the generality of the Compressive Robotic Sensing System concept.
这个项目研究了一组机器人的自主控制和协调,这些机器人的任务是探索、绘制地图或监控它们所处的环境。该项目旨在通过集成数据压缩感知来增强这样一组机器人的能力。压缩感知使机器人能够从其环境中快速提取信息,通过无线网络有效地相互交流信息,并智能地指导其运动以获取未来的相关感知数据。为了实现压缩机器人传感系统的潜力,该项目必须解决重大的理论和技术挑战。该项目将在两个具体应用中展示结果,(i)驱动一组空中机器人来监测它们的环境,(ii)驱动机器人微型探针来测量活细胞内部的过程。该项目还设法通过教育和外联活动传播其调查结果。研究结果将被纳入波士顿大学和斯坦福大学控制理论的本科和研究生课程。研究人员还将通过研究指导项目和为参观者提供实验室示范,与高中生和本科生合作。该项目的基本目标是创建严格分析的算法,利用稀疏信号描述为监测环境的传感机器人团队创建有效的运动计划。驱动假设是,稀疏性可以通过节省电池电量、计算、存储和通信带宽来极大地扩展机器人传感系统的性能——这些都是机器人平台的有限资源。研究小组将采用贝叶斯方法进行压缩感知,这使得感知质量可以用信息理论度量(如熵)来量化。将开发一种后退地平线控制方法,用于驱动机器人传感器收集最有价值的传感器数据,以便使用压缩感知重建其环境的稀疏表示。这种控制策略将适应静态和动态环境,并将寻求集中和分布式的解决方案。本项目开发的概念将应用于两个特定的传感领域:(i)传感环境数据的四旋翼传感机器人网络和(ii)用于生物分子系统动力学三维成像的共聚焦荧光显微镜。这两个应用程序域具有完全不同的长度和时间尺度、动态属性和信息内容。在这个项目中开发的想法在这两个领域的成功应用将证明压缩机器人传感系统概念的普遍性。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trust But Verify: A Distributed Algorithm for Multi-Robot Wireframe Exploration and Mapping
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mac Schwager其他文献

Touch-GS: Visual-Tactile Supervised 3D Gaussian Splatting
Touch-GS:视觉-触觉监督的 3D 高斯泼溅
  • DOI:
    10.48550/arxiv.2403.09875
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aiden Swann;Matthew Strong;Won Kyung Do;Gadiel Sznaier Camps;Mac Schwager;Monroe Kennedy
  • 通讯作者:
    Monroe Kennedy
Large-Scale Multi-Robot Assembly Planning for Autonomous Manufacturing
自主制造的大规模多机器人装配规划
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyle Brown;Dylan M. Asmar;Mac Schwager;Mykel J. Kochenderfer
  • 通讯作者:
    Mykel J. Kochenderfer

Mac Schwager的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mac Schwager', 18)}}的其他基金

NRI: FND: COLLAB: Distributed Semantically-Aware Tracking and Planning for Fleets of Robots
NRI:FND:COLLAB:机器人车队的分布式语义感知跟踪和规划
  • 批准号:
    1830402
  • 财政年份:
    2018
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Controlling Ecologically Destructive Processes with a Network of Intelligent Robotic Agents
职业:通过智能机器人代理网络控制生态破坏过程
  • 批准号:
    1646921
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CAREER: Controlling Ecologically Destructive Processes with a Network of Intelligent Robotic Agents
职业:通过智能机器人代理网络控制生态破坏过程
  • 批准号:
    1350904
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
CPS: Breakthrough: Collaborative Research: Cyber-Physical Manipulation (CPM): Locating, Manipulating, and Retrieving Large Objects with Large Populations of Robots
CPS:突破:协作研究:网络物理操纵(CPM):用大量机器人定位、操纵和检索大型物体
  • 批准号:
    1330036
  • 财政年份:
    2013
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
  • 批准号:
    2152289
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
  • 批准号:
    2152070
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211660
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Compressive Robotic Systems: Gaining Efficiency Through Sparsity in Dynamic Environments
协作研究:压缩机器人系统:通过动态环境中的稀疏性提高效率
  • 批准号:
    1562031
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
VEC: Small: Collaborative Research: Joint Compressive Spectral Imaging and 3D Ranging Sensing Using a Commodity Time-Of-Flight Range Sensor
VEC:小型:协作研究:使用商品飞行时间距离传感器进行联合压缩光谱成像和 3D 测距传感
  • 批准号:
    1539157
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
I/UCRC FRP: Collaborative Research: Scalable and Power-Efficient Compressive Sensing CMOS Image Sensors and Reconstruction Circuits
I/UCRC FRP:合作研究:可扩展且节能的压缩传感 CMOS 图像传感器和重建电路
  • 批准号:
    1535658
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
I/UCRC FRP: Collaborative Research: Scalable and Power-Efficient Compressive Sensing CMOS Image Sensors and Reconstruction Circuits
I/UCRC FRP:合作研究:可扩展且节能的压缩传感 CMOS 图像传感器和重建电路
  • 批准号:
    1535669
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
VEC: Small: Collaborative Research: Joint Compressive Spectral Imaging and 3D Ranging Sensing Using a Commodity Time-Of-Flight Range Sensor
VEC:小型:协作研究:使用商品飞行时间距离传感器进行联合压缩光谱成像和 3D 测距传感
  • 批准号:
    1538950
  • 财政年份:
    2015
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
SHB: Type I (EXP): Collaborative Research: EasySense: Contact-less Physiological Sensing in the Mobile Environment Using Compressive Radio Frequency Probes
SHB:I 型(EXP):合作研究:EasySense:使用压缩射频探头在移动环境中进行非接触式生理传感
  • 批准号:
    1231525
  • 财政年份:
    2012
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了