Data-Driven Distributionally Robust Stochastic Programming

数据驱动的分布式鲁棒随机规划

基本信息

  • 批准号:
    1563504
  • 负责人:
  • 金额:
    $ 26.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Stochastic programming aids in solving difficult problems with many unknown factors. It does so by relying on probability distributions to mathematically represent and predict uncertain events. However, probabilities of possible outcomes are rarely known in real life. Distributionally robust optimization aims to obtain solutions in the presence of such distributional uncertainties. There are a variety of ways to form distributionally robust stochastic programs. However, which type of model to use for which type of data, system, or decision maker is not well understood. This award supports research to have a deeper understanding of this fundamental question and to explore multi-period uncertainties. The project considers long-term water resources management problems that take various sources of input including climate data, hydrological simulations, expert opinions, and so forth. The results, if successful, will yield improved water management, benefitting the U.S. society and economy. The research findings will be incorporated into educational materials on stochastic optimization. The project will therefore contribute to educating students. The water application will be used to demonstrate the societal impact of our field and to attract women to engineering.To address the problem of effective modeling, the project will attempt a classification of models in a way that highlights how different sources of data and problem characteristics may require differing problem formulations. This research task will use probability theory, statistics, and risk theory to make recommendations. It will then utilize these results to improve modeling and data collection and devise sampling schemes. To address the problem of uncertainty revealed over time, the project will investigate data-driven multistage distributionally robust stochastic programs. This research task will examine how to translate multi-period uncertainties into the model and investigate the resulting model structure and properties. To effectively solve these models, decomposition-based solution methodologies will be explored. In addition, the project will examine the value of data and the effect of different scenarios on optimal solutions and values. Finally, the project will implement the modeling, algorithmic, and theoretical findings to solve real-world multi-period water allocation problems. If successful, the results are also applicable to other problems in energy, transportation, and finance with complex multi-period uncertainties.
随机规划有助于解决具有许多未知因素的困难问题。 它依靠概率分布来数学地表示和预测不确定事件。然而,在真实的生活中,可能结果的概率是很少知道的。分布鲁棒优化的目标是在存在这种分布不确定性的情况下获得解。有多种方法可以形成分布鲁棒随机规划。然而,对于哪种类型的数据、系统或决策者使用哪种类型的模型还没有很好的理解。该奖项支持研究更深入地了解这一基本问题,并探索多时期的不确定性。该项目考虑了长期的水资源管理问题,这些问题需要各种来源的投入,包括气候数据、水文模拟、专家意见等。如果成功,这些成果将改善水资源管理,造福美国社会和经济。研究结果将纳入随机优化的教材。 因此,该项目将有助于教育学生。水的应用将被用来展示我们的领域的社会影响,并吸引妇女到工程。为了解决有效建模的问题,该项目将尝试以一种突出不同的数据来源和问题特征可能需要不同的问题表述的方式对模型进行分类。本研究课题将运用概率论、统计学和风险理论提出建议。然后,它将利用这些结果来改进建模和数据收集,并制定抽样计划。 为了解决随着时间的推移所揭示的不确定性问题,该项目将研究数据驱动的多级分布鲁棒随机程序。本研究将探讨如何将多周期不确定性转化为模型,并研究由此产生的模型结构和特性。为了有效地解决这些模型,将探讨基于分解的解决方案方法。此外,该项目还将研究数据的价值以及不同情景对最佳解决方案和价值的影响。最后,该项目将实施建模、算法和理论发现,以解决现实世界的多时期水分配问题。 如果成功,结果也适用于能源,交通和金融等复杂的多期不确定性问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guzin Bayraksan其他文献

Guzin Bayraksan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guzin Bayraksan', 18)}}的其他基金

CAREER: Stochastic Optimization for Water Resources Management
职业:水资源管理的随机优化
  • 批准号:
    1345626
  • 财政年份:
    2013
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization for Water Resources Management
职业:水资源管理的随机优化
  • 批准号:
    1151226
  • 财政年份:
    2012
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant
EFRI-RESIN Workshop on Infrastructure Sustainability, Resilience, and Robustness, January 13-14, 2011, Tucson, Arizona
EFRI-RESIN 基础设施可持续性、弹性和稳健性研讨会,2011 年 1 月 13 日至 14 日,亚利桑那州图森
  • 批准号:
    1061787
  • 财政年份:
    2011
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
  • 批准号:
    DE240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
  • 批准号:
    EP/Y002008/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    $ 26.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了