SHF: Medium: Collaborative Research: Semi and Fully Automated Program Repair and Synthesis via Semantic Code Search
SHF:媒介:协作研究:通过语义代码搜索进行半自动化和全自动程序修复和合成
基本信息
- 批准号:1563797
- 负责人:
- 金额:$ 41.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many aspects of our economy rely heavily on software working correctly. However, software errors are common, routinely cause security breaches, and cost our economy billions of dollars annually. Despite the well-known high costs of software errors, the software industry struggles to overcome this challenge, as new errors are reported faster than they can be fixed. Recent research has demonstrated the potential of automated program repair techniques to address this challenge. In this research, we develop new techniques to fix software errors and implement new features automatically. The challenge is to fix code while not breaking other functionality, and to work toward repairing code of increasing complexity.The approach takes advantage of the high availability of open-source code that already implements many functions required for a new software project. The approach is to search for relevant code in open-source projects, adapt that code to its new context using automated software repair and generation techniques, and then validate the changed software. A key component of the approach is semantic code search, which queries large databases of code to find code snippets that satisfy a behavioral specification. The project develops novel techniques that (1) encode large, searchable bodies of code as behavioral profiles, (2) localize bugs and features to code blocks, modules, and components, (3) extract the desired behavioral profiles of those blocks, modules, and components, (4) use the extracted profiles to search the database for potential patches, (5) adapt the potential patches to fit into the code context, and (6) validate the potential patches. The project focuses on producing high-quality code, verifying that the injected code does not break existing functionality. The broader impacts come mainly from goal of radically improving software productivity through reuse and adaptation of existing code.
我们经济的许多方面在很大程度上依赖于软件的正常运行。然而,软件错误很常见,经常导致安全漏洞,每年给我们的经济造成数十亿美元的损失。尽管众所周知,软件错误的成本很高,但软件行业仍在努力克服这一挑战,因为报告新错误的速度快于修复它们的速度。最近的研究已经证明了自动程序修复技术解决这一挑战的潜力。在这项研究中,我们开发了新的技术来修复软件错误并自动实现新功能。挑战是在不破坏其他功能的情况下修复代码,并致力于修复日益复杂的代码。这种方法利用了开放源代码的高可用性,这些代码已经实现了新软件项目所需的许多功能。这种方法是在开源项目中搜索相关代码,使用自动软件修复和生成技术使代码适应新的上下文,然后验证更改后的软件。该方法的一个关键组件是语义代码搜索,它查询大型代码数据库以找到满足行为规范的代码片段。该项目开发了新的技术,这些技术(1)将大的、可搜索的代码体编码为行为配置文件,(2)定位错误和特征以编码块、模块和组件,(3)提取这些块、模块和组件所需的行为配置文件,(4)使用提取的配置文件来搜索数据库以寻找潜在的补丁,(5)调整潜在的补丁以适应代码上下文,以及(6)验证潜在的补丁。该项目专注于生成高质量的代码,验证注入的代码不会破坏现有功能。更广泛的影响主要来自通过重用和适配现有代码从根本上提高软件生产率的目标。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Common Statement Kind Changes to Inform Automatic Program Repair
- DOI:10.1145/3196398.3196472
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Mauricio Soto;Claire Le Goues
- 通讯作者:Mauricio Soto;Claire Le Goues
Cross-Architecture Lifter Synthesis
跨架构提升器综合
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:van Tonder, Rijnard;Le Goues, Claire
- 通讯作者:Le Goues, Claire
Static Automated Program Repair for Heap Properties
- DOI:10.1145/3180155.3180250
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:R. V. Tonder;Claire Le Goues
- 通讯作者:R. V. Tonder;Claire Le Goues
Semantic Crash Bucketing
- DOI:10.1145/3238147.3238200
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Rijnard van Tonder;John Kotheimer;Claire Le Goues
- 通讯作者:Rijnard van Tonder;John Kotheimer;Claire Le Goues
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Le Goues其他文献
Toward Semantic Foundations for Program Editors
为程序编辑奠定语义基础
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Cyrus Omar;Ian Voysey;Michael C Hilton;Joshua Sunshine;Claire Le Goues;Jonathan Aldrich;Matthew A. Hammer - 通讯作者:
Matthew A. Hammer
Seminal Papers in Software Engineering: The Carnegie Mellon Canonical Collection
软件工程领域的开创性论文:卡内基梅隆大学规范集
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
M. Shaw;Jonathan Aldrich;T. Breaux;D. Garlan;Christian Kästner;Claire Le Goues;W. Scherlis - 通讯作者:
W. Scherlis
ROSInfer: Statically Inferring Behavioral Component Models for ROS-Based Robotics Systems
ROSInfer:静态推断基于 ROS 的机器人系统的行为组件模型
- DOI:
10.1145/3597503.3639206 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tobias Dürschmid;C. Timperley;David Garlan;Claire Le Goues - 通讯作者:
Claire Le Goues
BugZoo: a platform for studying software bugs
BugZoo:研究软件错误的平台
- DOI:
10.1145/3183440.3195050 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
C. Timperley;S. Stepney;Claire Le Goues - 通讯作者:
Claire Le Goues
The Boogie Verification Debugger (Tool Paper)
Boogie验证调试器(工具文件)
- DOI:
10.1007/978-3-642-24690-6_28 - 发表时间:
2011 - 期刊:
- 影响因子:2.4
- 作者:
Claire Le Goues;K. Rustan M. Leino;Michal Moskal - 通讯作者:
Michal Moskal
Claire Le Goues的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Le Goues', 18)}}的其他基金
Collaborative Research: SHF: Small: Feedback-Driven Mutation Testing for Any Language
合作研究:SHF:小型:任何语言的反馈驱动突变测试
- 批准号:
2129388 - 财政年份:2021
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
SHF: Small: Idiomatic Decompilation.
SHF:小:惯用的反编译。
- 批准号:
1910067 - 财政年份:2019
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
CAREER: Quality Matters: Dynamic, Static and Proactive Analyses for Automated Program Repair
职业:质量很重要:自动程序修复的动态、静态和主动分析
- 批准号:
1750116 - 财政年份:2018
- 资助金额:
$ 41.2万 - 项目类别:
Continuing Grant
SHF: EAGER: Collaborative Research: Demonstrating the Feasibility of Automatic Program Repair Guided by Semantic Code Search
SHF:EAGER:协作研究:展示语义代码搜索引导的自动程序修复的可行性
- 批准号:
1446966 - 财政年份:2014
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
- 批准号:
2311295 - 财政年份:2023
- 资助金额:
$ 41.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




