CSR: Large: VarSys: Managing Variability in High-Performance Computing Systems

CSR:大型:VarSys:管理高性能计算系统的可变性

基本信息

项目摘要

The usefulness of the smallest mobile system in a pocket and the largest and fastest supercomputers in datacenters around the world require unrelenting advances in systems software design. These advances make computers faster, more reliable, more secure, better able to analyze large data sets, and ultimately essential to the lives of nearly everyone on the planet.Variability can wreak havoc on the performance of large-scale computer systems that support high-performance computing and e-commerce. In high-performance computing, variability threatens U.S. competitiveness and our ability to achieve exascale performance within the cost and energy constraints of supercomputers. In e-commerce (e.g., Amazon and Wall Street trading), variability threatens profit margins by requiring greater capital expenditures to compensate for potential swings in the performance of datacenters and the cloud. System variability also impairs our capacity to separate malware from normal system activity.This project will develop techniques to increase the ability to identify and manage variability in advanced computing systems. Specifically, this project will focus on developing the VarSys software framework to control aspects of variability and ultimately improve the design and operational efficiencies of both high-performance and cloud systems. Furthermore, to highlight the broader impact of VarSys beyond computer systems design, applying variability identification and management to improve malware detection will be an important component.In addition to publishing the results and creating open source software, the project team will be hosting technical meetings to encourage broad participation in the development of variability metrics and benchmarks for advanced computer systems. The intent is to develop an ecosystem of stakeholders dedicated to progress in the emergent area of computer system software variability. In addition to training graduate students, there will also be hack-a-thons targeting undergraduate students to educate them on the future impact of variability and encourage their involvement in related research.At present, computer system variability is often viewed as noise or an unavoidable consequence of complex designs. This project isolates causes of variability and identifies conditions when variability can be managed. When complete, the resulting VarSys software will enable scientific computer systems research previously impracticable. The usefulness of the techniques to improve the designs of advanced computing systems including high-performance supercomputers, cloud datacenters, and malware detection software will be demonstrated. These advances ultimately impact the lives and livelihood of consumers as well as ensuring U.S. competitiveness in science and e-commerce.
口袋里最小的移动系统和世界各地数据中心最大、最快的超级计算机的实用性,需要系统软件设计的不懈进步。这些进步使计算机更快、更可靠、更安全,能够更好地分析大数据集,最终对地球上几乎每个人的生活都至关重要。可变性可能会对支持高性能计算和电子商务的大型计算机系统的性能造成严重破坏。在高性能计算中,可变性威胁着美国的竞争力,以及我们在超级计算机的成本和能源限制下实现亿级性能的能力。在电子商务(例如,亚马逊和华尔街交易)中,变化性通过要求更大的资本支出来补偿数据中心和云性能的潜在波动,从而威胁到利润率。系统可变性也削弱了我们将恶意软件从正常系统活动中分离出来的能力。这个项目将开发技术来提高识别和管理高级计算系统中可变性的能力。具体地说,该项目将专注于开发VarSys软件框架,以控制变异性的各个方面,并最终提高高性能和云系统的设计和运营效率。此外,为了突出VarSys在计算机系统设计之外的更广泛影响,应用变异性识别和管理来改进恶意软件检测将是一个重要组成部分。除了发布结果和创建开放源码软件外,项目组还将主办技术会议,以鼓励广泛参与高级计算机系统的变异性度量和基准的开发。其目的是建立一个利益相关者的生态系统,致力于在计算机系统软件可变性的新兴领域取得进展。除了培训研究生外,还将有针对本科生的黑客技巧,教育他们关于可变性未来的影响,并鼓励他们参与相关研究。目前,计算机系统可变性通常被视为噪音或复杂设计不可避免的后果。这个项目隔离了可变性的原因,并确定了可变性可以管理的条件。建成后,VarSys软件将使以前不切实际的科学计算机系统研究成为可能。将展示这些技术在改进包括高性能超级计算机、云数据中心和恶意软件检测软件在内的先进计算系统设计方面的有用性。这些进步最终影响到消费者的生活和生计,并确保美国在科学和电子商务方面的竞争力。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A First Look: Using Linux Containers for Deceptive Honeypots
Security Optimization of Dynamic Networks with Probabilistic Graph Modeling and Linear Programming
Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle
Copula-based reliability analysis of degrading systems with dependent failures
Toward scalable monitoring on large-scale storage for software defined cyberinfrastructure
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kirk Cameron其他文献

Interpolation of sparse high-dimensional data
  • DOI:
    10.1007/s11075-020-01040-2
  • 发表时间:
    2020-11-13
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Thomas C. H. Lux;Layne T. Watson;Tyler H. Chang;Yili Hong;Kirk Cameron
  • 通讯作者:
    Kirk Cameron

Kirk Cameron的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kirk Cameron', 18)}}的其他基金

CNS: CORE: Small: iLORE: Computer Systems Performance Integrated Lineage Repository
CNS:核心:小型:iLORE:计算机系统性能集成谱系存储库
  • 批准号:
    1939076
  • 财政年份:
    2019
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
CSR: Large: VarSys: Managing Variability in High-Performance Computing Systems
CSR:大型:VarSys:管理高性能计算系统的可变性
  • 批准号:
    1838271
  • 财政年份:
    2018
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
CSR :Small: Exploiting Slowdowns for Speedup in Power-Scalable HPC Systems.
CSR:小:利用减速来提高功率可扩展 HPC 系统的速度。
  • 批准号:
    1422788
  • 财政年份:
    2014
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
SHF:Small:Collaborative Research: Application-aware Energy Modeling and Power Management for Parallel and High Performance Computing
SHF:Small:协作研究:用于并行和高性能计算的应用感知能源建模和电源管理
  • 批准号:
    1422712
  • 财政年份:
    2014
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
EAGER: Kinetic Computing Sculpture: A functional parallel cluster of Raspberry Pi computers that inspire computational thinking
EAGER:动能计算雕塑:激发计算思维的 Raspberry Pi 计算机功能并行集群
  • 批准号:
    1355955
  • 财政年份:
    2013
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: GridPac: A Resource Management System for Energy and Performance Optimization on Computational Grids
CSR:媒介:协作研究:GridPac:计算网格能源和性能优化的资源管理系统
  • 批准号:
    0905187
  • 财政年份:
    2009
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
CSR: Large: Collaborative Research: Multi-core Applications Modeling Infrastructure (MAMI)
CSR:大型:协作研究:多核应用建模基础设施 (MAMI)
  • 批准号:
    0910784
  • 财政年份:
    2009
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
SGER: Metrics And Methodologies for High Performance System Energy Benchmarking
SGER:高性能系统能源基准测试的指标和方法
  • 批准号:
    0848670
  • 财政年份:
    2008
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
CRI: MISER: A High-performance, Power-aware Cluster
CRI:MISER:高性能、功耗感知集群
  • 批准号:
    0709025
  • 财政年份:
    2007
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
CSR-AES: Thermal Conductors: Runtime software support for proactive heat management in advanced execution systems
CSR-AES:热导体:运行时软件支持高级执行系统中的主动热管理
  • 批准号:
    0720750
  • 财政年份:
    2007
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
  • 批准号:
    31972875
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
  • 批准号:
    30971650
  • 批准年份:
    2009
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
  • 批准号:
    30800648
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
  • 批准号:
    30772435
  • 批准年份:
    2007
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Fellowship
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
  • 批准号:
    10097766
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Collaborative R&D
How Large Earthquakes Change Our Dynamically Deforming Planet
大地震如何改变我们动态变形的星球
  • 批准号:
    DP240102450
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Discovery Projects
Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Research Grant
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Research Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
  • 批准号:
    2317251
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
Differentiating Cyclogenesis with and without Large Amplitude Mesoscale Gravity Waves: Implications for Rapidly Varying Heavy Precipitation and Gusty Winds
区分有和没有大振幅中尺度重力波的气旋发生:对快速变化的强降水和阵风的影响
  • 批准号:
    2334171
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Continuing Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 118.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了