CSEDI Collaborative Research: Experimental and Theoretical Investigations on the Elastic and Viscoelastic Properties of Fe-Ni-C Liquids

CSEDI合作研究:Fe-Ni-C液体弹性和粘弹性的实验和理论研究

基本信息

  • 批准号:
    1565678
  • 负责人:
  • 金额:
    $ 18.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The Earth's core, the most remote and dynamic part of our planet, is composed of liquid iron alloys solidified at its center. The nature and dynamics of the core are closely related to manifold geophysical problems such as the driving force of mantle convection, the geodynamo, and planetary evolution. The core is predominantly iron (Fe) alloyed with 5-10% nickel (Ni) and some lighter elements, such as sulfur (S), silicon (Si), carbon (C), oxygen (O), and hydrogen (H). The knowledge of the properties of Fe-rich alloys and liquids under relevant core conditions is a prerequisite for understanding the composition, thermal state and dynamics of the core. In comparison to crystalline iron alloys for the inner core, there exists a remarkable lack of data on liquid properties of iron-rich alloys due to experimental challenges, which have been investigated at conditions far below those expected for the outer core. The lack of data on liquid properties and great challenges facing experimental investigations under relevant core conditions are expected to continue in the foreseeable future. This prompts the team to adopt a synergistic approach by integrating experiments at experimentally-achievable pressures with computations up to core conditions. The focus of this collaborative research will be on the elastic and viscoelastic properties of Fe-Ni-C liquids under high pressures through the synergy between experiment and theory. This approach for investigating liquid properties represents a potential methodology for studying liquid properties under extreme conditions, so as to speculate on the suitability of such combined efforts for similar high-pressure liquid state physics research. The proposed research offers a unique opportunity to engage graduate and undergraduate students to utilize state-of-the-art experimental techniques and computational tools at multi-scale facilities (departmental, university, and national laboratory) for solving fundamental problems in an active research area.The elastic and viscoelastic properties of Fe-Ni-C liquids will be investigated at high pressures by experimental techniques such as X-ray absorption, ultrasonic interferometry, X-ray diffraction, and X-ray viscometry, in combination with computational techniques, to establish a comprehensive mineral physics database on the density, sound velocity, viscosity, and structure of the liquids in a previously uncharted pressure-temperature-composition sector. The laboratory data will provide an important foundation on which the interpretation of ultrahigh pressure laboratory data and theoretical data will be based. The low-pressure data will be used to benchmark and validate results from theoretical calculations at low-pressure, and the higher-pressure calculation results will be used to estimate and predict liquid properties under core conditions. Such a methodology largely eliminates errors often induced in long extrapolations from low-pressure to core pressures, and identifies prospective biases in theoretical calculations. High pressure-temperature behaviors of the iron-rich liquids by the synergistic efforts from laboratory experiments and theoretical calculations will help improve our understanding of the physics and chemistry of the core. Stringent tests of carbon-rich core composition models for the outer core will be performed based on the liquid properties determined from this research. The outcome of the proposed projects, i.e., structure, density, sound velocity, and viscosity of core materials, will become essential parts of the study on carbon reservoirs and deep carbon cycle in the Earth and planetary interiors. The new experimental data could also be readily used in the discussion of planetary cores, such as the lunar core. The team is committed to disseminating the results through peer-reviewed journal publications and to publicizing their work to their local and greater communities through news releases, public lectures, and their research websites.
地核是地球上最遥远和最有活力的部分,由在其中心凝固的液态铁合金组成。地核的性质和动力学与地幔对流驱动力、地球发电机和行星演化等诸多地球物理问题密切相关。核心主要是铁(Fe)与5-10%的镍(Ni)和一些较轻的元素(例如硫(S)、硅(Si)、碳(C)、氧(O)和氢(H))的合金。了解富铁合金和液体在相关堆芯条件下的性质是了解堆芯成分、热状态和动力学的先决条件。与用于内核的晶体铁合金相比,由于实验挑战,富铁合金的液体性质数据显著缺乏,这些数据已经在远低于外核预期的条件下进行了研究。在可预见的将来,预计在相关堆芯条件下,液体性质数据的缺乏和实验研究面临的巨大挑战将继续存在。这促使团队采用协同方法,将实验可实现的压力下的实验与核心条件下的计算相结合。 这项合作研究的重点将是通过实验和理论之间的协同作用,在高压下的Fe-Ni-C液体的弹性和粘弹性。这种研究液体性质的方法代表了一种研究极端条件下液体性质的潜在方法,从而推测这种联合努力对类似高压液体物理研究的适用性。拟议的研究提供了一个独特的机会,让研究生和本科生在多尺度设施中利用最先进的实验技术和计算工具(部门,大学和国家实验室),用于解决活跃研究领域的基本问题。Fe-Ni-C液体的弹性和粘弹性将在高压下通过实验技术进行研究,如X射线吸收,超声波干涉测量法、X射线衍射和X射线粘度计,结合计算技术,建立了一个关于密度、声速、粘度和液体结构的全面矿物物理数据库,该数据库涉及以前未知的压力-温度-组成部分。实验室数据将为解释地层压力实验室数据和理论数据提供重要依据。低压数据将用于基准测试和验证低压理论计算结果,高压计算结果将用于估计和预测岩心条件下的液体性质。这种方法在很大程度上消除了从低压到核心压力的长期外推中经常引起的误差,并确定了理论计算中的预期偏差。通过实验室实验和理论计算的协同作用,研究富铁液体的高温高压行为,将有助于加深对堆芯物理化学的认识。根据这项研究确定的液体性质,将对外核的富碳核组成模型进行严格的测试。拟议项目的成果,即,核心物质的结构、密度、声速和粘度等将成为研究地球和行星内部碳库和深部碳循环的重要组成部分。新的实验数据也可以很容易地用于讨论行星核心,如月球核心。该团队致力于通过同行评审的期刊出版物传播结果,并通过新闻稿,公开讲座和研究网站向当地和更大的社区宣传他们的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianwei Wang其他文献

Detection of human bocavirus 3 in China
中国检测人类博卡病毒3型
A Sample Introduction Method Based on Negative Pressure in Flow Injection‐Capillary Electrophoresis System and Its Application to the Alkaline‐Earth Metal Cation Separation
流动注射-毛细管电泳系统负压进样方法及其在碱土金属阳离子分离中的应用
  • DOI:
    10.1081/al-200051062
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Jianwei Wang;Pei;J. Mo;Zuanguang Chen
  • 通讯作者:
    Zuanguang Chen
Quantitative assessment of emphysema from whole lung CT scans: comparison with visual grading
全肺 CT 扫描对肺气肿的定量评估:与视觉分级的比较
  • DOI:
    10.1117/12.812254
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    B. Keller;A. Reeves;T. Apanasovich;Jianwei Wang;D. Yankelevitz;C. Henschke
  • 通讯作者:
    C. Henschke
Porous Lanthanum-Doped Manganese Oxide Nanoparticles for Enhanced Sonodynamic Cancer Therapy
用于增强声动力癌症治疗的多孔掺镧锰氧化物纳米颗粒
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Jinhao Zhou;Liyin Shi;Qiyu Liu;Haozhe Zhang;Xiaoqing Liu;Feng Han;Zhixing Guo;Xihong Lu;Jianwei Wang
  • 通讯作者:
    Jianwei Wang
Neutrophil recruitment and activation by Hassall’s corpuscles: Implications of “sterile inflammation” in the thymic medulla
哈索尔小体的中性粒细胞募集和激活:胸腺髓质“无菌炎症”的含义
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianwei Wang;Miho Sekai;Nagahiro Minato;and Yoko Hamazaki
  • 通讯作者:
    and Yoko Hamazaki

Jianwei Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2154072
  • 财政年份:
    2022
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153688
  • 财政年份:
    2022
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSEDI: Integrating Seismic Anisotropy, Mantle Flow, and Rock Deformation in Subduction Zone Settings
合作研究:CSEDI:在俯冲带环境中整合地震各向异性、地幔流和岩石变形
  • 批准号:
    2153910
  • 财政年份:
    2022
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054884
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054964
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Continuing Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102571
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: Understanding of the effects of large planetesimal collisions on Hadean Earth mantle dynamics
CSEDI合作研究:了解大型星子碰撞对冥古宙地幔动力学的影响
  • 批准号:
    2102777
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054912
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The nature and timing of Earth's accretion
CSEDI 合作研究:地球吸积的性质和时间
  • 批准号:
    2054876
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
CSEDI Collaborative Research: The Origins and Implications of Inner Core Seismic Anisotropy
CSEDI合作研究:内核地震各向异性的起源和意义
  • 批准号:
    2054993
  • 财政年份:
    2021
  • 资助金额:
    $ 18.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了