CAREER: Higher Teichmuller Theory

职业:高等泰希米勒理论

基本信息

  • 批准号:
    1566585
  • 负责人:
  • 金额:
    $ 16.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0846408Principal Investigator: Anna WienhardThe goal of the proposed project is to further develop theemerging field of higher Teichmueller theory. Higher Teichmuellerspaces are connected components of the variety of representationsof the fundamental group of a surface into semisimple Lie groups,which share essential properties with Teichmuellerspace. Classical Teichmueller space plays an important role invarious fields of mathematics due to its rich structure and thefact that it is a smooth cover of the moduli space of Riemannsurfaces. For higher Teichmueller spaces many potentiallyinteresting structures are yet to be discovered and the relationto the moduli space of Riemann surfaces still needs to beclarified. The proposed research focusses on identifying thegeometric objects (similar to hyperbolic surfaces in the case ofclassical Teichmueller space) which are parametrized by higherTeichmueller spaces. These objects will then be used to definealgebraic, geometric and dynamical structures on higherTeichmueller spaces, and we expect that they will help toconstruct a natural map from higher Teichmueller spaces toclassical Teichmueller space.Teichmueller space is the space of all geometric surfaces with afixed combinatorial type. Because it parametrizes all surfaces,Teichmueller space is a fundamental mathematical object whichalso plays an important role in theoretical physics. Every pointin Teichmueller space corresponds to a tiling of the Euclideanplane, the two-dimensional sphere or in most cases the hyperbolicplane by one polygon and its images under subsequent reflectionsin the sides. (Nice pictures inspired by such tilings appear inM.C. Escher's work.) The combinatorial type of the surface isdetermined by the number of vertices of the polygon and thegluing data, but the geometry of the surface depends on thelength of the sides and the angles at the vertices of thepolygon. Teichmueller space is the example of a moduli space of apattern (the tiling) with rich symmetries (the reflections in theside of the polygon). Such moduli spaces can be efficientlystudied via the group generated by the symmetries of thepattern. Higher Teichmueller spaces are moduli spaces of morecomplicated patterns in higher dimensional spaces. However, thesymmetry group of these patterns is the same as the symmetrygroup of the tilings associated to classical Teichmuellerspace. Therefore one expects higher Teichmueller spaces toparametrize geometric objects which are not surfaces themselves,but closely related to surfaces. The proposed research focusseson identifying these geometric objects and studying their finerstructure.The project proposes various activities to involve graduatestudents in research and teaching, as for instance a yearlymathematical retreat for graduate students to study, explore andpresent a mathematical topic in a group, and small workshops withmini-courses which allow graduate students to get insight intothe working of modern research collaborations.
摘要奖:DMS-0846408首席研究员:安娜·维恩德提议的项目的目标是进一步发展新兴的高等泰希穆勒理论领域。高阶Teichmueller空间是曲面的基本群表示为半单李群的连通分支,其本质性质与Teichmueller空间相同。经典Teichmueller空间由于其丰富的结构和它是黎曼曲面的模空间的光滑覆盖而在数学的各个领域都扮演着重要的角色。对于高阶Teichmueller空间,许多潜在有趣的结构尚待发现,与Riemann曲面的模空间的关系也有待进一步研究。所提出的研究集中于识别被高阶TeichMueller空间参数化的几何对象(类似于经典TeichMueller空间中的双曲曲面)。然后,这些对象将被用来定义高阶TeichMueller空间上的几何、几何和动力结构,我们期望它们将有助于构造从高阶TeichMueller空间到经典TeichMueller空间的自然映射。TeichMueller空间是具有固定组合类型的所有几何曲面的空间。TeichMueller空间是一个基本的数学对象,因为它将所有的曲面都参数化,在理论物理中也扮演着重要的角色。每个Pointin Teichmueller空间对应于欧几里德平面、二维球面或在大多数情况下双曲平面由一个多边形及其在随后的侧面反射下的图像的平铺。(受到这种瓷砖启发的漂亮图片出现在M.C.埃舍尔的作品中。)曲面的组合类型由多边形顶点数和粘合数据决定,而曲面的几何形状取决于多边形边的长度和顶点的角度。Teichmueller空间是一个具有丰富对称性(在多边形边的反射)的模空间的例子。这种模空间可以通过由模式的对称性生成的群来有效地研究。高维Teichmueller空间是高维空间中具有更复杂模式的模空间。然而,这些图案的对称群与经典Teichmueller空间中的镶嵌的对称群相同。因此,人们期望更高的Teichmueller空间将不是曲面本身,但与曲面密切相关的几何对象参数化。这项拟议的研究集中于识别这些几何物体并研究它们的精细结构。该项目提出了各种活动,让毕业生参与到研究和教学中来,例如,研究生可以参加一年的数学静修,让他们以小组形式学习、探索和展示一个数学主题,以及带有迷你课程的小研讨会,让研究生深入了解现代研究合作的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Wienhard其他文献

Bounded Cohomology and Geometry
有界上同调和几何
Hermitian symmetric spaces and Kahler rigidity
埃尔米特对称空间和卡勒刚性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Burger;A. Iozzi;Anna Wienhard
  • 通讯作者:
    Anna Wienhard
$mathrm{SL}_2$-like Properties of Matrices Over Noncommutative Rings and Generalizations of Markov Numbers
非交换环上矩阵的$mathrm{SL}_2$类性质和马尔可夫数的推广
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zachary Greenberg;Dani Kaufman;Anna Wienhard
  • 通讯作者:
    Anna Wienhard
Conformality for a robust class of non-conformal attractors
一类稳健的非共形吸引子的共形性
A generalisation of Teichmüller space in the hermitian context
厄米背景下 Teichmüller 空间的推广
  • DOI:
    10.5802/tsg.348
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Wienhard
  • 通讯作者:
    Anna Wienhard

Anna Wienhard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Wienhard', 18)}}的其他基金

FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1536017
  • 财政年份:
    2014
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Deformation Spaces of Geometric Structures
FRG:协作研究:几何结构的变形空间
  • 批准号:
    1065919
  • 财政年份:
    2011
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
SWIM - Women in Mathematics - Summer Workshop for High School Students
SWIM - 数学界的女性 - 高中生暑期研讨会
  • 批准号:
    1019608
  • 财政年份:
    2010
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
CAREER: Higher Teichmuller Theory
职业:高等泰希米勒理论
  • 批准号:
    0846408
  • 财政年份:
    2009
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Continuing Grant
Geometry and dynamics of representations into semisimple Lie Groups
半单李群表示的几何和动力学
  • 批准号:
    0803216
  • 财政年份:
    2007
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Geometry and dynamics of representations into semisimple Lie Groups
半单李群表示的几何和动力学
  • 批准号:
    0604665
  • 财政年份:
    2006
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
  • 批准号:
    24K16704
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
De Montfort University Higher Education Corporation and FABRIC Charitable Incorporated Organisation KTP 23_24 R1
德蒙福特大学高等教育公司和 FABRIC 慈善法人组织 KTP 23_24 R1
  • 批准号:
    10071520
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Knowledge Transfer Partnership
Investigating the Outcome of EMI Programs in Higher Education Context: Cases from Japan and Mongolia
调查高等教育背景下 EMI 项目的成果:日本和蒙古的案例
  • 批准号:
    24K16709
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CC* Regional Networking: Connecting Colorado's Western Slope Small Institutions of Higher Education to the Front Range GigaPoP Regional R&E Infrastructure
CC* 区域网络:将科罗拉多州西坡小型高等教育机构与前沿 GigaPoP 区域 R 连接起来
  • 批准号:
    2346635
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Higher Representation Theory and Subfactors
更高表示理论和子因素
  • 批准号:
    2400089
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
Congestion control in complex networks with higher-order interactions
具有高阶交互的复杂网络中的拥塞控制
  • 批准号:
    DP240100963
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Discovery Projects
University of Portsmouth Higher Education Corporation and Entec International Limited KTP 23_24 R1
朴茨茅斯大学高等教育公司和 Entec International Limited KTP 23_24 R1
  • 批准号:
    10070881
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Knowledge Transfer Partnership
Conference: Moving to higher rank: from hyperbolic to Anosov
会议:迈向更高级别:从双曲线到阿诺索夫
  • 批准号:
    2350423
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
CC* Planning: Leading Advanced University Computing for Higher Education (LAUNCH) MSU
CC* 规划:领先的高等教育先进大学计算 (LAUNCH) MSU
  • 批准号:
    2346088
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Standard Grant
TransformUs Higher Ed: Developing confident, 'classroom-ready' graduates
TransformUs 高等教育:培养自信、“为课堂做好准备”的毕业生
  • 批准号:
    DE240100452
  • 财政年份:
    2024
  • 资助金额:
    $ 16.53万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了