Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications

合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用

基本信息

  • 批准号:
    1600065
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Calderon-Zygmund operators are mathematical objects that play an important role in the understanding of many physical phenomena, ranging from heat transfer to turbulence in dynamical systems. The classical theory of these operators was designed to work on smooth functions. However, nature often provides us with very irregular media with which to engage. This creates the need for a very low-regularity form of the theory of singular integrals, which the principal investigators on this project have constructed. A consequence of the low-regularity theory is that through the action of Calderon-Zygmund operators on a set in a Euclidean space of a very high dimension, one can sometimes conclude that the set itself is of a much lower dimension than the ambient space, an important piece of information from the perspective of data science. To refine this approach to data analysis is one of the main goals of this project. This project considers several problems in nonhomogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme uniting the problems is the behavior of singular operators with very good (Calderon-Zygmund) kernels in very bad environments (e.g., on sets with no a priori structure, in spaces with matrix weights). Specifically, the project will pursue the following avenues of research: (1) the David-Semmes problem to characterize the rectifiability of sets and measures in high-dimensional Euclidean space in terms of the boundedness of the corresponding Riesz transforms; (2) the geometry of reflection-less measures; (3) the geometric characterization of higher-dimensional analogues of positive analytic capacity; (4) two-weight estimates for very simple singular operators in the non-Hilbert setting; and (5) sharp estimates for classical operators with matrix weights. Singular integral operators with respect to bad measures and very irregular sets appear naturally in many problems of analysis. One of the reasons for their increasing interest in recent years has been the study of analytic capacity. While the theory for the two-dimensional case (i.e., the Cauchy transform on the complex plane) and the theory of analytic capacity that emerged as its by-product are now very well understood, the analogous theory in higher dimensions has not been fully developed. The main roadblock here is the lack of geometric tools in higher dimensions. Additionally, in higher dimensions, nonhomogeneous situations arise more often than in the plane and more often one might expect. For example, boundary value problems in (otherwise smooth) domains with cusps lead to nonhomogeneous problems, because, unlike what happens in the two-dimensional setting, surface measure on the boundary of such a domain is non-doubling. This becomes an even more vexing problem if one wants to consider harmonic measure estimates for domains on whose boundaries "surface measure" is practically arbitrary. This is an important issue that the project seeks to confront.
Calderon-Zygmund算符是一种数学对象,在理解动力系统中从热传递到湍流的许多物理现象中发挥着重要作用。这些算子的经典理论是为处理光滑函数而设计的。然而,大自然经常为我们提供非常不规律的媒体来参与。这就需要一种非常低正则形式的奇异积分理论,这个项目的主要研究人员已经构建了这种形式。低正则理论的一个结果是,通过Calderon-Zygmund算子对高维欧几里德空间中的集合的作用,有时可以得出结论,该集合本身的维度比环境空间低得多,从数据科学的角度来看,环境空间是一条重要的信息。改进这种数据分析方法是该项目的主要目标之一。这个项目考虑了非齐次调和分析、几何测度论和谱理论中的几个问题。统一这些问题的共同主题是具有非常好(Calderon-Zygmund)核的奇异算子在非常糟糕的环境中的行为(例如,在没有先验结构的集合上,在具有矩阵权重的空间中)。具体地说,该项目将追求以下研究途径:(1)David-Semmes问题,以相应的Riesz变换的有界性来刻画高维欧氏空间中集合和测度的可正性;(2)无反射测度的几何;(3)正分析能力的高维类似物的几何特征;(4)非常简单奇异算子在非Hilbert环境下的双权估计;以及(5)带矩阵权的经典算子的尖锐估计。在许多分析问题中,关于不良测度和非常不规则集的奇异积分算子是很自然地出现的。近年来,他们越来越感兴趣的原因之一是对分析能力的研究。虽然二维情形的理论(即复平面上的柯西变换)和作为其副产品出现的解析能力理论现在已经被很好地理解,但更高维的类似理论还没有得到充分的发展。这里的主要障碍是缺乏更高维度的几何工具。此外,在更高的维度中,不均匀的情况比在平面中更频繁地出现,也更多地出现在人们可能预期的情况中。例如,在具有尖点的(否则光滑的)区域中的边值问题会导致非齐次问题,因为与在二维环境中发生的情况不同,这种区域边界上的曲面测量是非加倍的。如果人们想要考虑其边界上的“表面度量”实际上是任意的区域的调和度量估计,这就成为一个更令人烦恼的问题。这是该项目试图面对的一个重要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Volberg其他文献

NONCOMMUTATIVE BOHNENBLUST–HILLE INEQUALITY IN THE HEISENBERG–WEYL AND GELL-MANN BASES WITH APPLICATIONS TO FAST LEARNING
海森堡-韦尔和盖尔曼基中的非交换 Bohnenblust-Hille 不等式及其在快速学习中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Dimension-free discretizations of the uniform norm by small product sets
  • DOI:
    10.1007/s00222-024-01306-9
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lars Becker;Ohad Klein;Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure ✩
如果谐波测度相对于同维一豪斯多夫测度绝对连续,则它是可校正的 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Jonas Azzam;Steve Hofmann;J. M. Martell;S. Mayboroda;Mihalis Mourgoglou;X. Tolsa;Alexander Volberg
  • 通讯作者:
    Alexander Volberg
On the sign distributions of Hilbert space frames
  • DOI:
    10.1007/s13324-019-00304-y
  • 发表时间:
    2019-05-06
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Nikolai Nikolski;Alexander Volberg
  • 通讯作者:
    Alexander Volberg

Alexander Volberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Volberg', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1900268
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
  • 批准号:
    1265549
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0758552
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Non-Homogeneous Harmonic Analysis, two weight estimates, and spectral problems
非齐次谐波分析、两次权重估计和谱问题
  • 批准号:
    0501067
  • 财政年份:
    2005
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
  • 批准号:
    0200713
  • 财政年份:
    2002
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Three Measures on Fractals
数学科学:分形的三种测度
  • 批准号:
    9302728
  • 财政年份:
    1993
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
  • 批准号:
    AH/X011747/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
  • 批准号:
    2902365
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
  • 批准号:
    EP/Y031962/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
  • 批准号:
    EP/Y033124/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
  • 批准号:
    EP/Y033183/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了