Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications

合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用

基本信息

  • 批准号:
    1600065
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Calderon-Zygmund operators are mathematical objects that play an important role in the understanding of many physical phenomena, ranging from heat transfer to turbulence in dynamical systems. The classical theory of these operators was designed to work on smooth functions. However, nature often provides us with very irregular media with which to engage. This creates the need for a very low-regularity form of the theory of singular integrals, which the principal investigators on this project have constructed. A consequence of the low-regularity theory is that through the action of Calderon-Zygmund operators on a set in a Euclidean space of a very high dimension, one can sometimes conclude that the set itself is of a much lower dimension than the ambient space, an important piece of information from the perspective of data science. To refine this approach to data analysis is one of the main goals of this project. This project considers several problems in nonhomogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme uniting the problems is the behavior of singular operators with very good (Calderon-Zygmund) kernels in very bad environments (e.g., on sets with no a priori structure, in spaces with matrix weights). Specifically, the project will pursue the following avenues of research: (1) the David-Semmes problem to characterize the rectifiability of sets and measures in high-dimensional Euclidean space in terms of the boundedness of the corresponding Riesz transforms; (2) the geometry of reflection-less measures; (3) the geometric characterization of higher-dimensional analogues of positive analytic capacity; (4) two-weight estimates for very simple singular operators in the non-Hilbert setting; and (5) sharp estimates for classical operators with matrix weights. Singular integral operators with respect to bad measures and very irregular sets appear naturally in many problems of analysis. One of the reasons for their increasing interest in recent years has been the study of analytic capacity. While the theory for the two-dimensional case (i.e., the Cauchy transform on the complex plane) and the theory of analytic capacity that emerged as its by-product are now very well understood, the analogous theory in higher dimensions has not been fully developed. The main roadblock here is the lack of geometric tools in higher dimensions. Additionally, in higher dimensions, nonhomogeneous situations arise more often than in the plane and more often one might expect. For example, boundary value problems in (otherwise smooth) domains with cusps lead to nonhomogeneous problems, because, unlike what happens in the two-dimensional setting, surface measure on the boundary of such a domain is non-doubling. This becomes an even more vexing problem if one wants to consider harmonic measure estimates for domains on whose boundaries "surface measure" is practically arbitrary. This is an important issue that the project seeks to confront.
Calderon-Zygmund算子是数学对象,在理解许多物理现象中起着重要作用,从热传递到动力系统中的湍流。 这些算子的经典理论被设计用于光滑函数。然而,大自然经常为我们提供非常不规则的媒介。这就需要一种非常低正则性的奇异积分理论,这是本项目的主要研究人员所构建的。低正则性理论的一个结果是,通过Calderon-Zygmund算子在高维欧氏空间中的集合上的作用,有时可以得出结论,该集合本身的维数比周围空间低得多,这是数据科学的一个重要信息。完善这种数据分析方法是本项目的主要目标之一。这个项目考虑了非齐次调和分析、几何测度理论和谱理论中的几个问题。这些问题的共同主题是具有非常好的(Calderon-Zygmund)内核的奇异算子在非常恶劣的环境中的行为(例如,在没有先验结构的集合上,在具有矩阵权重的空间中)。具体而言,该项目将进行以下研究:(1)David-Semmes问题,以根据相应Riesz变换的有界性来表征高维欧氏空间中集合和测度的可求正性;(2)无反射测度的几何;(3)正解析容量的高维类似物的几何表征;(4)正解析容量的高维类似物的几何表征。(4)非Hilbert空间中非常简单奇异算子的双权估计,(5)带矩阵权的经典算子的锐估计.关于坏测度和非常不规则集合的奇异积分算子自然地出现在许多分析问题中。近年来,他们越来越感兴趣的原因之一是对分析能力的研究。虽然二维情况的理论(即,复平面上的柯西变换)和作为其副产品出现的解析能力理论现在已经很好地理解了,但高维中的类似理论还没有完全发展。这里的主要障碍是缺乏更高维度的几何工具。此外,在更高的维度中,非均匀的情况比在平面中更频繁地出现,并且更经常地出现。例如,在具有尖点的域(否则是光滑的)中的边值问题会导致非齐次问题,因为与二维设置中发生的情况不同,这种域的边界上的表面测量是非加倍的。这成为一个更令人烦恼的问题,如果要考虑调和测量估计域的边界上的“表面措施”实际上是任意的。这是该项目试图解决的一个重要问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Volberg其他文献

NONCOMMUTATIVE BOHNENBLUST–HILLE INEQUALITY IN THE HEISENBERG–WEYL AND GELL-MANN BASES WITH APPLICATIONS TO FAST LEARNING
海森堡-韦尔和盖尔曼基中的非交换 Bohnenblust-Hille 不等式及其在快速学习中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Dimension-free discretizations of the uniform norm by small product sets
  • DOI:
    10.1007/s00222-024-01306-9
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lars Becker;Ohad Klein;Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure ✩
如果谐波测度相对于同维一豪斯多夫测度绝对连续,则它是可校正的 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Jonas Azzam;Steve Hofmann;J. M. Martell;S. Mayboroda;Mihalis Mourgoglou;X. Tolsa;Alexander Volberg
  • 通讯作者:
    Alexander Volberg
On the sign distributions of Hilbert space frames
  • DOI:
    10.1007/s13324-019-00304-y
  • 发表时间:
    2019-05-06
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Nikolai Nikolski;Alexander Volberg
  • 通讯作者:
    Alexander Volberg

Alexander Volberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Volberg', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1900268
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
  • 批准号:
    1265549
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0758552
  • 财政年份:
    2008
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Non-Homogeneous Harmonic Analysis, two weight estimates, and spectral problems
非齐次谐波分析、两次权重估计和谱问题
  • 批准号:
    0501067
  • 财政年份:
    2005
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
  • 批准号:
    0200713
  • 财政年份:
    2002
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Three Measures on Fractals
数学科学:分形的三种测度
  • 批准号:
    9302728
  • 财政年份:
    1993
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
  • 批准号:
    2314750
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了