Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis

合作研究:非齐次谐波分析的普遍性现象和一些难题

基本信息

  • 批准号:
    1265549
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2016-05-31
  • 项目状态:
    已结题

项目摘要

This collaborative mathematics research project by Fedor Nazarov, Serguei Treil and Alexander Volberg is in the area of harmonic analysis. Nazarov, Treil and Volberg will concentrate their efforts on several well-known hard problems in non-homogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme among majority of the problems is the so-called "universality" phenomenon, i.e. the fact that in many situations the boundedness of one operator (or a small collection of operators) implies that a much wider class of operators is bounded as well. Most of the problems lie in the realm of the non-homogeneous harmonic analysis, where underlying sets and measures are highly irregular. Singular integral operators with respect to singular measures and very irregular sets appear naturally in many problems of analysis. One of the motivations for the one-weight non-homogeneous case was the study of analytic capacity. The more sophisticated two-weight estimates of singular operators appear naturally in spectral theory and in the perturbation theory of self-adjoint operators. These problems are notoriously difficult, but using new techniques recently developed by Nazarov, Treil and Volberg and other researchers, they expect to make fundamental progress in the problems. This collaborative mathematics research project by Nazarov, Treil and Volberg is focused in the field of harmonic analysis, which is known to have fundamental applications to other disciplines, most notably to the analysis of large data sets, to image processing, and to the study of wave propagation. The results and mathematical tools that will be developed through this project could also have a bearing on other areas of mathematics, such as mathematical physics, partial differential equations, probability. The project will provide a good training ground for graduate students as well as for mathematicians at the beginning of their careers. Nazarov, Treil and Volberg anticipate an active involvement of their graduate students and postdocs in the project.
Fedor Nazarov、Serguei Treil和亚历山大·沃尔伯格(Alexander Volberg)的这个合作数学研究项目属于调和分析领域。 纳扎罗夫,特雷和沃尔伯格将集中精力在几个著名的非齐次谐波分析,几何测度理论和谱理论的难题。大多数问题的共同主题是所谓的“普适性”现象,即在许多情况下,一个算子(或一小部分算子)的有界性意味着更广泛的一类算子也是有界的。大多数的问题在于领域的非齐次调和分析,其中基本的集合和措施是非常不规则的。关于奇异测度和非常不规则集合的奇异积分算子自然地出现在许多分析问题中。单权非齐次情形的动机之一是分析能力的研究。奇异算子的更复杂的双权估计自然出现在谱理论和自伴算子的扰动理论中。这些问题是出了名的困难,但使用最近开发的新技术Nazarov,Treil和Volberg和其他研究人员,他们希望在这些问题上取得根本性的进展。Nazarov,Treil和Volberg的这个合作数学研究项目专注于谐波分析领域,众所周知,谐波分析在其他学科中具有基本应用,最值得注意的是大型数据集的分析,图像处理和波传播的研究。 通过该项目开发的结果和数学工具也可能对数学的其他领域产生影响,例如数学物理,偏微分方程,概率。该项目将提供一个良好的培训基地,研究生以及数学家在他们的职业生涯的开始。 Nazarov,Treil和Volberg预计他们的研究生和博士后将积极参与该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Volberg其他文献

NONCOMMUTATIVE BOHNENBLUST–HILLE INEQUALITY IN THE HEISENBERG–WEYL AND GELL-MANN BASES WITH APPLICATIONS TO FAST LEARNING
海森堡-韦尔和盖尔曼基中的非交换 Bohnenblust-Hille 不等式及其在快速学习中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Dimension-free discretizations of the uniform norm by small product sets
  • DOI:
    10.1007/s00222-024-01306-9
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lars Becker;Ohad Klein;Joseph Slote;Alexander Volberg;Haonan Zhang
  • 通讯作者:
    Haonan Zhang
Harmonic measure is rectifiable if it is absolutely continuous with respect to the co-dimension-one Hausdorff measure ✩
如果谐波测度相对于同维一豪斯多夫测度绝对连续,则它是可校正的 ✩
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Acad;Sci;Ser. I Paris;Jonas Azzam;Steve Hofmann;J. M. Martell;S. Mayboroda;Mihalis Mourgoglou;X. Tolsa;Alexander Volberg
  • 通讯作者:
    Alexander Volberg
On the sign distributions of Hilbert space frames
  • DOI:
    10.1007/s13324-019-00304-y
  • 发表时间:
    2019-05-06
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Nikolai Nikolski;Alexander Volberg
  • 通讯作者:
    Alexander Volberg

Alexander Volberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Volberg', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154402
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1900268
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
  • 批准号:
    1600065
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0758552
  • 财政年份:
    2008
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Non-Homogeneous Harmonic Analysis, two weight estimates, and spectral problems
非齐次谐波分析、两次权重估计和谱问题
  • 批准号:
    0501067
  • 财政年份:
    2005
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Pertubations of Normal Operators and Two Weight Estimates of Singular Integrals
多维非齐次调和分析:贝尔曼函数、正规算子的摄动和奇异积分的两个权重估计
  • 批准号:
    0200713
  • 财政年份:
    2002
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Three Measures on Fractals
数学科学:分形的三种测度
  • 批准号:
    9302728
  • 财政年份:
    1993
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Formation of Research Platform on "Transborder Japanese Literature" in Global Scale: In Search of Its Universality as "World Literature"
全球范围内“跨国日本文学”研究平台的形成:探求其作为“世界文学”的普遍性
  • 批准号:
    19H01240
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Doctoral Dissertation Research: Investigating the Universality of the Subject Requirement through a Language With Overt Correspondents for Postulated Null Subjects
博士论文研究:通过具有假定空主题的公开通讯者的语言来调查主题要求的普遍性
  • 批准号:
    1841673
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Universality and locality in Micronesian Englishes: Comparative analyses across Micronesian Englishes and real-time studies of Palauan English over 20 years(Fostering Joint International Research)
密克罗尼西亚英语的普遍性和局部性:密克罗尼西亚英语的比较分析和帕劳英语20年来的实时研究(促进国际联合研究)
  • 批准号:
    16KK0025
  • 财政年份:
    2017
  • 资助金额:
    $ 24万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Research on universality and crossover near quantum critical points in strongly correlated quantum impurity systems
强相关量子杂质体系中量子临界点附近的普适性和交叉研究
  • 批准号:
    15K05181
  • 财政年份:
    2015
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative research: Universality phenomena and several hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象及若干难题
  • 批准号:
    1265623
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象和一些难题
  • 批准号:
    1301579
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Cross-cultural research on the universality of modesty and self-enhancement in 13 countries: With neuro scientific examination included
关于 13 个国家谦虚和自我提升普遍性的跨文化研究:包括神经科学检查
  • 批准号:
    25285177
  • 财政年份:
    2013
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the symptoms of speech disorders from linguistic universality and diversity and Research on therapy
从语言的普遍性和多样性阐明言语障碍的症状及治疗研究
  • 批准号:
    23320083
  • 财政年份:
    2011
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Doctoral Dissertation Research: Verb Learning and the Acquisition of Aspect: Rethinking Universality of Aspect and the Significance of L1 Transfer"
《博士论文研究:动词学习与体的习得:重新思考体的普遍性和母语迁移的意义》
  • 批准号:
    0544789
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Empirical Research on the Meaning of Amae and its Universality across Cultures
Amae 的含义及其跨文化普遍性的实证研究
  • 批准号:
    18530479
  • 财政年份:
    2006
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了