De Branges Spaces as Models for a General Theory of Function Spaces
德布兰吉斯空间作为函数空间一般理论的模型
基本信息
- 批准号:1600874
- 负责人:
- 金额:$ 13.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Modern processing of signals is almost always performed on the digital (discretized) version of the original signals, which is obtained by sampling the signals on a discrete set. One of the fundamental issues when converting an analog (continuous) signal to a digital (discrete) one is the following question: Can the original signals be recovered from the samples, and if so, how accurately? The answer, of course, depends heavily on the nature of the signals that are being processed. For example, signals that are more complex (oscillatory) in nature require more samples for accurate reconstruction. The precise mathematical relationship between the rate of oscillation and the required rate of sampling is surprisingly delicate, especially when the samples are non-uniform. This project is centered on the problem of understanding precisely this relationship, including several other mathematical questions that arise naturally from it. Analytic function spaces have always played an important role in the mathematical theory of signal processing. One natural class of such spaces that is particularly useful when studying non-uniform sampling is the class of de Branges spaces. Introduced in the sixties, the theory of de Branges spaces encompassed a great deal of mathematical analysis knowledge at that time, and it continues to play an important role in modern mathematics, providing a setting for the interplay of various areas of mathematics, including Fourier analysis, spectral theory, operator theory, random matrix theory, analytic number theory, and mathematical physics. The main research objective of this project is to conduct a deeper analysis of de Branges function spaces, and use the resulting findings to attack and resolve several long-standing open problems. Many of these problems are much more general in nature and go far beyond the setting of de Branges spaces. The reason that de Branges spaces serve as a model rests on the fact that this class of spaces already exhibits most of the key difficulties confronting signal processors. Another important goal of this project is to develop a theory that will unify the theory of classical function spaces, and use this unification as a guideline for developing new methods for resolving the remaining open questions about these spaces.
现代信号处理几乎总是在原始信号的数字(离散化)版本上执行,该数字(离散化)版本通过对离散集上的信号进行采样而获得。将模拟(连续)信号转换为数字(离散)信号时的一个基本问题是以下问题:能否从样本中恢复原始信号,如果可以,精度如何?当然,答案在很大程度上取决于被处理信号的性质。例如,本质上更复杂(振荡)的信号需要更多的样本来进行精确重建。振荡速率和所需采样速率之间的精确数学关系令人惊讶地微妙,特别是当样本不均匀时。这个项目的重点是准确地理解这种关系的问题,包括其他几个自然产生的数学问题。解析函数空间一直在信号处理的数学理论中发挥着重要作用。在研究非均匀采样时特别有用的一类自然空间是de布兰日空间。德布兰日空间理论在60年代提出,包含了当时大量的数学分析知识,它在现代数学中继续发挥着重要作用,为数学的各个领域,包括傅立叶分析,谱理论,算子理论,随机矩阵理论,解析数论和数学物理的相互作用提供了一个环境。该项目的主要研究目标是对de布兰日函数空间进行更深入的分析,并利用所得结果来攻击和解决几个长期存在的开放问题。许多这些问题是更普遍的性质,远远超出了设置德布兰日空间。德布兰日空间作为一个模型的原因在于这样一个事实,即这类空间已经表现出大多数的关键困难所面临的信号处理器。该项目的另一个重要目标是开发一个理论,将统一的理论经典的功能空间,并使用这种统一作为指导方针,开发新的方法来解决剩余的开放问题,这些空间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mishko Mitkovski其他文献
Localized Frames and Compactness
- DOI:
10.1007/s00041-015-9429-7 - 发表时间:
2015-09-21 - 期刊:
- 影响因子:1.200
- 作者:
Fawwaz Batayneh;Mishko Mitkovski - 通讯作者:
Mishko Mitkovski
On the determinacy problem for measures
- DOI:
10.1007/s00222-015-0588-6 - 发表时间:
2015-03-14 - 期刊:
- 影响因子:3.600
- 作者:
Mishko Mitkovski;Alexei Poltoratski - 通讯作者:
Alexei Poltoratski
A sharp sufficient condition for mobile sampling in terms of surface density
表面密度移动采样的锐利充分条件
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.5
- 作者:
B. Jaye;Mishko Mitkovski;Manasa N. Vempati - 通讯作者:
Manasa N. Vempati
Quantum Harmonic Analysis on the Unweighted Bergman Space of the Unit Ball
- DOI:
10.1007/s00020-025-02803-z - 发表时间:
2025-07-19 - 期刊:
- 影响因子:0.900
- 作者:
Matthew Dawson;Vishwa Dewage;Mishko Mitkovski;Gestur Ólafsson - 通讯作者:
Gestur Ólafsson
Invertibility of Positive Toeplitz Operators and Associated Uncertainty Principle
正 Toeplitz 算子的可逆性及相关的不确定性原理
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.2
- 作者:
A. Green;Mishko Mitkovski - 通讯作者:
Mishko Mitkovski
Mishko Mitkovski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mishko Mitkovski', 18)}}的其他基金
Uncertainty Principles in Reproducing Kernel Hilbert Spaces
再现核希尔伯特空间的不确定性原理
- 批准号:
2000236 - 财政年份:2020
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Southeastern Analysis Meeting: SEAM 2014
东南分析会议:SEAM 2014
- 批准号:
1400361 - 财政年份:2014
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Hilbert spaces of analytic functions and their applications
解析函数的希尔伯特空间及其应用
- 批准号:
1304208 - 财政年份:2012
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
Hilbert spaces of analytic functions and their applications
解析函数的希尔伯特空间及其应用
- 批准号:
1101251 - 财政年份:2011
- 资助金额:
$ 13.8万 - 项目类别:
Standard Grant
相似海外基金
Approximation dans les espaces de de Branges-Rovnyak
Branges-Rovnyak 空间的近似值
- 批准号:
574033-2022 - 财政年份:2022
- 资助金额:
$ 13.8万 - 项目类别:
University Undergraduate Student Research Awards
Topological structures for semiclosed operators using de Branges space theory
使用 de Branges 空间理论的半闭算子拓扑结构
- 批准号:
24540160 - 财政年份:2012
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Derivative of functions in de branges and dirichlet spaces
de branges 和 Dirichlet 空间中函数的导数
- 批准号:
251135-2007 - 财政年份:2011
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Grants Program - Individual
Derivative of functions in de branges and dirichlet spaces
de branges 和 Dirichlet 空间中函数的导数
- 批准号:
251135-2007 - 财政年份:2010
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Grants Program - Individual
Espaces de de Branges, inégalité de Bernstein et application
Espaces de Branges、inégalité de Bernstein 及应用
- 批准号:
393861-2010 - 财政年份:2010
- 资助金额:
$ 13.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Derivative of functions in de branges and dirichlet spaces
de branges 和 Dirichlet 空间中函数的导数
- 批准号:
251135-2007 - 财政年份:2009
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Grants Program - Individual
Derivative of functions in de branges and dirichlet spaces
de branges 和 Dirichlet 空间中函数的导数
- 批准号:
251135-2007 - 财政年份:2008
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Grants Program - Individual
Derivative of functions in de branges and dirichlet spaces
de branges 和 Dirichlet 空间中函数的导数
- 批准号:
251135-2007 - 财政年份:2007
- 资助金额:
$ 13.8万 - 项目类别:
Discovery Grants Program - Individual
de Branges分解とJ-縮小作用素値関数
de Branges 分解和 J 约简运算符值函数
- 批准号:
04640113 - 财政年份:1992
- 资助金额:
$ 13.8万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)