Uncertainty Principles in Reproducing Kernel Hilbert Spaces

再现核希尔伯特空间的不确定性原理

基本信息

  • 批准号:
    2000236
  • 负责人:
  • 金额:
    $ 30.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

One of the fundamental principles of the theory of signal and information processing is the so-called Gabor uncertainty principle, which says that it is impossible for a signal to be perfectly localized simultaneously in time and in frequency. Perhaps counterintuitively, it is exactly this uncertainty principle that allows us to digitize analog signals; that is, to completely recover analog (continuous) signals that are band-limited, in some sense, from their samples recorded at (appropriate) discrete set of times. The precise rate at which the sampling needs to be done to guarantee stable recovery depends crucially on the band-limited nature of the signal. The main goal of this project is to quantify this subtle relationship precisely for very general types of restriction on signal bandwidth. In addition the project provides research training opportunities for graduate students. This project aims to develop a general operator-theoretic treatment of uncertainty principles, with a goal of unifying many different forms of the uncertainty principle that appear in harmonic analysis, and to discover new ones. In view of the advanced development of harmonic analysis, it is quite surprising that manifestations of the uncertainty principle are still usually studied one at a time, isolated one from another. This project aims to systematize these results, further explore the connections between them, and pave the way for new applications to control theory, partial differential equations, and other areas of mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信号和信息处理理论的基本原理之一是所谓的伽柏不确定性原理,即信号不可能在时间和频率上同时完美定位。也许与直觉相反,正是这种不确定性原理使我们能够对模拟信号进行重构;也就是说,从在(适当的)离散时间组记录的样本中完全恢复在某种意义上是带限的模拟(连续)信号。为了保证稳定的恢复,需要进行采样的精确速率关键取决于信号的带限性质。这个项目的主要目标是量化这种微妙的关系,精确地为非常一般类型的信号带宽的限制。此外,该项目还为研究生提供研究培训机会。该项目的目的是开发一个通用的算子理论处理的不确定性原则,与统一的目标出现在谐波分析中的不确定性原则的许多不同形式,并发现新的。鉴于谐波分析的先进发展,令人惊讶的是,不确定性原理的表现形式仍然通常一次一个地研究,彼此孤立。该项目旨在将这些成果系统化,进一步探索它们之间的联系,并为控制理论、偏微分方程和其他数学领域的新应用铺平道路。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative Uniqueness Properties for L 2 Functions with Fast Decaying, or Sparsely Supported, Fourier Transform
具有快速衰减或稀疏支持的傅立叶变换的 L 2 函数的定量唯一性属性
Riesz–Kolmogorov Type Compactness Criteria in Function Spaces with Applications
  • DOI:
    10.1007/s11785-023-01346-8
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Mishko Mitkovski;Cody B. Stockdale;Nathan A. Wagner;B. Wick
  • 通讯作者:
    Mishko Mitkovski;Cody B. Stockdale;Nathan A. Wagner;B. Wick
Necessary density conditions for d-approximate interpolation sequences in the Bargmann-Fock space
Bargmann-Fock 空间中 d 近似插值序列的必要密度条件
Uncertainty Principles Associated to Sets Satisfying the Geometric Control Condition
满足几何控制条件的集合的不确定性原理
  • DOI:
    10.1007/s12220-021-00830-x
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Green, Walton;Jaye, Benjamin;Mitkovski, Mishko
  • 通讯作者:
    Mitkovski, Mishko
A sufficient condition for mobile sampling in terms of surface density
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mishko Mitkovski其他文献

Localized Frames and Compactness
On the determinacy problem for measures
  • DOI:
    10.1007/s00222-015-0588-6
  • 发表时间:
    2015-03-14
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Mishko Mitkovski;Alexei Poltoratski
  • 通讯作者:
    Alexei Poltoratski
A sharp sufficient condition for mobile sampling in terms of surface density
表面密度移动采样的锐利充分条件
Quantum Harmonic Analysis on the Unweighted Bergman Space of the Unit Ball
  • DOI:
    10.1007/s00020-025-02803-z
  • 发表时间:
    2025-07-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Matthew Dawson;Vishwa Dewage;Mishko Mitkovski;Gestur Ólafsson
  • 通讯作者:
    Gestur Ólafsson
Invertibility of Positive Toeplitz Operators and Associated Uncertainty Principle
正 Toeplitz 算子的可逆性及相关的不确定性原理

Mishko Mitkovski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mishko Mitkovski', 18)}}的其他基金

De Branges Spaces as Models for a General Theory of Function Spaces
德布兰吉斯空间作为函数空间一般理论的模型
  • 批准号:
    1600874
  • 财政年份:
    2016
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Southeastern Analysis Meeting: SEAM 2014
东南分析会议:SEAM 2014
  • 批准号:
    1400361
  • 财政年份:
    2014
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Hilbert spaces of analytic functions and their applications
解析函数的希尔伯特空间及其应用
  • 批准号:
    1304208
  • 财政年份:
    2012
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
  • 批准号:
    1241272
  • 财政年份:
    2012
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Hilbert spaces of analytic functions and their applications
解析函数的希尔伯特空间及其应用
  • 批准号:
    1101251
  • 财政年份:
    2011
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
  • 批准号:
    2339483
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
  • 批准号:
    2416160
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
  • 批准号:
    AH/Y007549/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
  • 批准号:
    2338129
  • 财政年份:
    2024
  • 资助金额:
    $ 30.01万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了