Descriptive Set Theory and Measured Group Theory
描述集合论和测度群论
基本信息
- 批准号:1600904
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to address several problems in the areas of descriptive combinatorics and orbit equivalence. These topics lie at the interface of descriptive set theory, measured group theory, graph theory, ergodic theory, probability theory, and operator algebras. In recent years, mathematicians in these fields have come to realize that problems concerning algebraic, dynamical, and descriptive structural complexity of countable group and equivalence relations can be fruitfully studied via descriptive combinatorial and graph theoretic means. The principal investigator and collaborators have employed this combinatorial perspective to create new tools used to answer several open problems in these fields. In addition to a combinatorial perspective, research in these fields is also facilitated by a global perspective, from which problems in ergodic theory, for example, may be seen as topological-dynamical and descriptive problems concerning actions of the group of automorphisms of a standard probability space. This research project aims to generate more new general tools and to promote fruitful interactions among these fields. Measured group theory seeks to understand countably infinite groups through ergodic theoretic properties of their measurable actions on standard probability spaces, and particularly through structural properties of the orbit equivalence relations generated by these actions. The motivating phenomenon is that algebraic properties of an acting group are often expressed through measurable properties of the associated equivalence relation. An extreme form of this phenomenon is seen in orbit equivalence and cocycle rigidity and superrigidity theorems, which state that in certain settings an equivalence relation completely remembers the group from which it was generated. At the other extreme are what might be called orbit equivalence anti-rigidity theorems, stating that certain groups and actions cannot be distinguished by looking at the equivalence relations they generate. This research project touches upon phenomena at both of these extremes. The questions are motivated by rigidity/anti-rigidity results established by the principal investigator and collaborators, which have led to new questions addressed in this project. The project will address problems concerning algebraic, dynamical, and descriptive structural complexity of countable groups and equivalence relations, specifically in the areas of orbit equivalence, treeability, cocycle superrigidity, weak equivalence rigidity, and measurable combinatorial properties and parameters of graphs and group actions. The project pursues a descriptive combinatorial and graph theoretic approach to these problems.
本计画旨在解决描述性组合学与轨道等价领域的几个问题。这些主题在于接口的描述集理论,测量群理论,图论,遍历理论,概率论和算子代数。近年来,数学家们逐渐认识到,可数群的代数复杂性、动力复杂性和描述结构复杂性以及等价关系等问题可以通过描述组合和图论的方法得到有效的研究。主要研究者和合作者采用这种组合的观点来创建新的工具,用于回答这些领域中的几个开放问题。除了组合的角度,这些领域的研究也是由一个全球性的角度,从遍历理论的问题,例如,可以被看作是拓扑动力学和描述性的问题有关的行动组的自同构的一个标准的概率空间。该研究项目旨在产生更多新的通用工具,并促进这些领域之间富有成效的互动。测度群理论试图通过可数无限群在标准概率空间上的可测作用的遍历理论性质,特别是通过这些作用产生的轨道等价关系的结构性质来理解可数无限群。激励的现象是,作用群的代数性质通常通过相关等价关系的可测量性质来表达。这种现象的一个极端形式见于轨道等价和上循环刚性与超刚性定理,它们指出在某些情况下,等价关系完全记住了它所产生的群。另一个极端是所谓的轨道等价反刚性定理,它指出某些群和作用不能通过观察它们产生的等价关系来区分。这个研究项目涉及这两个极端的现象。这些问题的动机是由主要研究者和合作者建立的刚性/反刚性结果,这导致了本项目中解决的新问题。该项目将解决有关可数群和等价关系的代数,动力学和描述性结构复杂性的问题,特别是在轨道等价,Trestrom,cocycle superrigidity,弱等价刚性以及可测量的组合性质和参数的图和群作用等领域。该项目追求一个描述性的组合和图论方法来解决这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Tucker-Drob其他文献
Robin Tucker-Drob的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Tucker-Drob', 18)}}的其他基金
Dynamical and descriptive aspects of groups and their actions
群体及其行为的动态和描述性方面
- 批准号:
2246684 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Descriptive Dynamics: Group Actions and Their Measured, Borel, and Topological Structures
描述动力学:群行为及其测量结构、Borel 结构和拓扑结构
- 批准号:
2216533 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Descriptive Dynamics: Group Actions and Their Measured, Borel, and Topological Structures
描述动力学:群行为及其测量结构、Borel 结构和拓扑结构
- 批准号:
1855825 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
选择性SET7/9抑制剂的设计优化及缺血性脑损伤保护机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
C-KIT激酶区突变调控SET在儿童急性髓系白血病耐药中的作用及机制研究
- 批准号:JCZRLH202500940
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SET7通过调控糖酵解和氧化还原稳态参与PE发生发展的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
脱乙酰化酶复合物Set3C介导蛋白酶体稳态调控新型隐球菌耐热性
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
PLK1磷酸化ELF1招募Set1/COMPASS复合体调控胶质瘤谷氨酰胺代谢的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
CBX8协同SET靶向CDH1促进卵果癌上皮间质转化的作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
PUF60通过调控SET可变多聚腺苷酸化参与DNA损伤修复促进卵巢癌耐药的机制
- 批准号:82303055
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ASXL2缺失致SET1甲基化不足抑制TIP150转录在低氧精子尾部畸形中的作用机制研究
- 批准号:CSTB2023NSCQ-MSX0034
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
甲基转移酶SET-18/SMYD2通过调控溶酶体活性促进衰老的分子机制研究
- 批准号:32371323
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
致癌组蛋白H3K4M突变调控Set1/MLL家族蛋白稳态的分子机制探究
- 批准号:32301059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPAS-2020-00097 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPIN-2020-05445 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2224709 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2054508 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPIN-2020-05445 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2054182 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPAS-2020-00097 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant