Quantum Invariants, Enhanced Moduli, and Integrable Systems
量子不变量、增强模和可积系统
基本信息
- 批准号:1601438
- 负责人:
- 金额:$ 12.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research in the field of algebraic geometry. The research sets the stage for understanding the basic structure of fundamental problems in a way suitable for pragmatic use in a broad spectrum of applications. The results of the work are intended to be immediately relevant to questions in the theory of integrable systems, string theory, gauge theory, and the study of topological insulators. In addition, the research project aims to have concrete applications to field theory and quantization. The project also aims to build a new arsenal of geometric techniques applicable to the theory of algebraic cycles, symplectic topology, and high energy physics. This will be achieved by providing research opportunities on the interface of geometry and string theory for graduate students and postdoctoral associates in mathematics and physics, and by development of courses on formal localization and shifted quantization and on Calabi-Yau integrable systems and higher Donaldson-Thomas theory. The project integrates ideas from derived geometry and quantum field theory to unravel the hidden complexity of moduli problems, to extract new enumerative invariants of varieties, and to study completely integrable systems. The resolution of these questions will consolidate and demystify several existing quantization schemes in geometry, symplectic topology, and field theory. Three directions will be studied. The first aims to characterize those moduli spaces that admit a realization as the critical locus of a potential. The characterization requires the development of the formalism of shifted symplectic and Poisson structures in derived geometry and the theory of isotropic foliations. In the second project a new method will be investigated for constructing motivic orientation data on non-abelian cohomology by building explicit Lagrangian foliations and computing the associated potential functions. The project aims to construct higher Chern-Simons functionals, and sets the stage for extracting enumerative invariants from higher dimensional quantum field theory. The final project searches for Calabi-Yau integrable systems that realize the tame or wild meromorphic Hitchin fibrations for ADE structure groups.
该奖项支持代数几何领域的研究。该研究为理解基本问题的基本结构奠定了基础,适合在广泛的应用中实用。这项工作的结果是为了立即相关的问题,在理论的可积系统,弦理论,规范理论和研究的拓扑绝缘体。 此外,该研究项目的目的是有具体的应用领域的理论和量化。 该项目还旨在建立一个新的武器库的几何技术适用于理论的代数循环,辛拓扑结构和高能物理。这将通过为数学和物理学的研究生和博士后研究生提供几何学和弦理论接口的研究机会,以及通过开发关于形式局部化和移位量子化以及卡-丘可积系统和更高的唐纳森-托马斯理论的课程来实现。该项目整合了衍生几何和量子场论的思想,以解开模问题隐藏的复杂性,提取新的变量的枚举不变量,并研究完全可积的系统。这些问题的解决将巩固和揭开几个现有的量子化方案在几何,辛拓扑,场论。将研究三个方向。第一个目的是表征这些模空间,承认实现的关键轨迹的潜力。该特征需要发展推导几何中的移位辛和泊松结构的形式主义以及各向同性叶理理论。在第二个项目中,将研究一种新的方法,通过建立显式拉格朗日叶理和计算相关的势函数来构建非阿贝尔上同调的motivic方向数据。该项目旨在构建更高的Chern-Simons泛函,并为从高维量子场论中提取枚举不变量奠定基础。最后一个项目是寻找能够实现ADE结构群的驯服或野生亚纯希钦纤维化的Calabi-Yau可积系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Pantev其他文献
Schematic homotopy types and non-abelian Hodge theory
图式同伦类型和非阿贝尔霍奇理论
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:1.8
- 作者:
L. Katzarkov;Tony Pantev;Bertrand Toën - 通讯作者:
Bertrand Toën
Introductory topics in derived algebraic geometry
派生代数几何的入门主题
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Tony Pantev;Gabriele Vezzosi - 通讯作者:
Gabriele Vezzosi
Chern-Simons theory, decomposition, and the A model
Chern-Simons 理论、分解和 A 模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tony Pantev;Eric Sharpe;Xingyang Yu - 通讯作者:
Xingyang Yu
Tony Pantev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Pantev', 18)}}的其他基金
NSF-BSF: Derived and quantum corrected structures on arithmetic and geometric moduli
NSF-BSF:算术和几何模量的导出和量子校正结构
- 批准号:
2200914 - 财政年份:2022
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Poisson Geometry, Quantum Moduli, and Geometric Dualities
泊松几何、量子模和几何对偶
- 批准号:
1901876 - 财政年份:2019
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Enhanced moduli, Hodge theory, and quantization
增强模、Hodge 理论和量化
- 批准号:
1302242 - 财政年份:2013
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
New Hodge theoretic invariants in geometry and physics
几何和物理学中的新霍奇理论不变量
- 批准号:
1001693 - 财政年份:2010
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
University of Pennsylvania RTG in Mathematical Physics
宾夕法尼亚大学 RTG 数学物理专业
- 批准号:
0636606 - 财政年份:2007
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Hodge Theory, Dualities and Non-Commutative Geometry
霍奇理论、对偶性和非交换几何
- 批准号:
0403884 - 财政年份:2004
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Geometry of Non-abelian Hodge Structures
非交换霍奇结构的几何
- 批准号:
0099715 - 财政年份:2001
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Geometric Applications of Non-Abelian Hodge Theory
非阿贝尔霍奇理论的几何应用
- 批准号:
9800790 - 财政年份:1998
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
相似海外基金
Structure vs Invariants in Proofs (StrIP)
证明中的结构与不变量 (StrIP)
- 批准号:
MR/Y011716/1 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Fellowship
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Motivic invariants and birational geometry of simple normal crossing degenerations
简单正态交叉退化的动机不变量和双有理几何
- 批准号:
EP/Z000955/1 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Research Grant
Conference: Tensor Invariants in Geometry and Complexity Theory
会议:几何和复杂性理论中的张量不变量
- 批准号:
2344680 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
- 批准号:
2402367 - 财政年份:2024
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Ramsey-type problems from graph-invariants
图不变量的拉姆齐型问题
- 批准号:
23K03204 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Continuing Grant
Non-semisimple quantum invariants of three and four manifolds
三流形和四流形的非半简单量子不变量
- 批准号:
2304990 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 12.14万 - 项目类别:
Standard Grant