Geometric Langlands Program and Arithmetic Algebraic Geometry

几何朗兰兹纲领和算术代数几何

基本信息

  • 批准号:
    1602092
  • 负责人:
  • 金额:
    $ 39.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The Langlands Program is a mathematical framework that unifies questions in many different areas of mathematics, especially number theory and linear algebra. The traditional arithmetic Langlands program has been studied for more than fifty years, and this research has resulted in significant applications to solving classical Diophantine equations, for example, the proof of Fermat's last theorem. The geometric Langlands program, which is relatively new, is under rapid development thanks to powerful tools from algebraic geometry. In this project, the investigator will explore connections between these two different facets of the Langlands program by applying geometric methods to study arithmetic problems. In more detail, this is a project to study the geometric Langlands program and its applications to arithmetic geometry. The investigator will apply his results on the geometric Satake correspondence for p-adic groups and the p-adic Riemann-Hilbert correspondence to investigate the mod p and p-adic geometry of Shimura varieties. The investigator will also explore the relations between residues that appear in the theory of automorphic forms and the topology of spaces of rational maps.
朗兰兹纲领是一个数学框架,它统一了许多不同数学领域的问题,特别是数论和线性代数。传统的算术朗兰兹程序已经研究了50多年,这一研究在求解经典丢番图方程中有着重要的应用,例如费马最后定理的证明。几何朗兰兹计划,这是相对较新的,正在迅速发展,由于强大的工具,从代数几何。在这个项目中,研究人员将探索朗兰兹程序的这两个不同方面之间的联系,通过应用几何方法来研究算术问题。更详细地说,这是一个研究几何朗兰兹程序及其在算术几何中的应用的项目。调查员将应用他的结果对几何佐竹对应的p-adic组和p-adic黎曼-希尔伯特对应调查模p和p-adic几何志村品种。调查员也将探讨出现在理论的自守形式和拓扑空间的理性地图之间的关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinwen Zhu其他文献

Affine Demazure modules and T-fixed point subschemes in the affine Grassmannian
仿射 Grassmannian 中的仿射 Demazure 模块和 T 不动点子方案
  • DOI:
    10.1016/j.aim.2009.01.003
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Xinwen Zhu
  • 通讯作者:
    Xinwen Zhu
On the coherence conjecture of Pappas and Rapoport
论帕帕斯和拉波波特的相干猜想
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinwen Zhu
  • 通讯作者:
    Xinwen Zhu
Non-abelian Hodge theory for algebraic curves in characteristic p
特征 p 代数曲线的非阿贝尔 Hodge 理论
The two-dimensional Contou-Carrère symbol and reciprocity laws
二维 Contou-Carrere 符号和互易定律
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Osipov;Xinwen Zhu
  • 通讯作者:
    Xinwen Zhu
Integral homology of loop groups via Langlands dual groups
通过朗兰兹对偶群的环群的积分同源性
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhiwei Yun;Xinwen Zhu
  • 通讯作者:
    Xinwen Zhu

Xinwen Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinwen Zhu', 18)}}的其他基金

Geometric and Arithmetic Langlands Program
几何与算术朗兰兹纲领
  • 批准号:
    2200940
  • 财政年份:
    2022
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
  • 批准号:
    1902239
  • 财政年份:
    2019
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
  • 批准号:
    1535464
  • 财政年份:
    2014
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
  • 批准号:
    1303296
  • 财政年份:
    2013
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Double Loop Groups and Algebras, Central Extensions, and their Representations
双环群和代数、中心推广及其表示
  • 批准号:
    1313894
  • 财政年份:
    2012
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Double Loop Groups and Algebras, Central Extensions, and their Representations
双环群和代数、中心推广及其表示
  • 批准号:
    1001280
  • 财政年份:
    2010
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

模p Langlands对应与Jacquet-Langlands对应研究
  • 批准号:
    12371011
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
使用endo-参数探索局部Langlands 对应
  • 批准号:
    21ZR1441900
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
例外群G_2的Langlands对应与Arthur重数猜想
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Langlands 纲领和表示理论
  • 批准号:
    11922101
  • 批准年份:
    2019
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
模p Langlands 纲领和Shimura曲线的上同调
  • 批准号:
    11971028
  • 批准年份:
    2019
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
某些Rapoport-Zink空间的上同调与模p Langlands纲领
  • 批准号:
    11901331
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
顶点算子代数在局部几何Langlands纲领中的应用
  • 批准号:
    10971071
  • 批准年份:
    2009
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric and Arithmetic Langlands Program
几何与算术朗兰兹纲领
  • 批准号:
    2200940
  • 财政年份:
    2022
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Geometric methods in the p-adic Langlands program
p 进朗兰兹纲领中的几何方法
  • 批准号:
    2201112
  • 财政年份:
    2022
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    2306369
  • 财政年份:
    2022
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
  • 批准号:
    2101837
  • 财政年份:
    2021
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952705
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952566
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952556
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952667
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program
FRG:合作研究:p-Adic Langlands 计划中的几何结构
  • 批准号:
    1952678
  • 财政年份:
    2020
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
Geometric Langlands Program and Arithmetic Algebraic Geometry
几何朗兰兹纲领和算术代数几何
  • 批准号:
    1902239
  • 财政年份:
    2019
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了