FRG: Collaborative Research: Geometric Structures in the p-Adic Langlands Program

FRG:合作研究:p-Adic Langlands 计划中的几何结构

基本信息

  • 批准号:
    1952667
  • 负责人:
  • 金额:
    $ 22.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Number theory is the branch of mathematics that studies phenomena related to properties of whole numbers. A typical number theoretic question is to determine the number of whole or rational number solutions of some equation of interest. (For example, the lengths of the three sides of a right triangle are related by the Pythagorean theorem. While it is straightforward to find all right triangles whose side lengths are rational numbers, it perhaps surprisingly remains an unsolved problem to determine which whole numbers can be the area of a right triangle with rational sides.) The answers to such questions can often be encoded in certain mathematical functions known as L-functions. The mathematician Robert Langlands has developed a series of conjectures (or mathematical predictions) regarding L-functions, which predict that any L-function should arise from another kind of mathematical function called an automorphic form. One approach to the study of automorphic forms and L-functions is the use of p-adic methods. These are methods that involve using divisibility properties with respect to some fixed prime number p to study automorphic forms and L-functions. Recently, p-adic methods have begun to be unified with Langlands's ideas into a so-called "p-adic Langlands program." This project aims to develop new results and methods in the p-adic Langlands program, primarily of a geometric nature, and to use them to establish new instances of Langlands's conjectures. The award will support the training of students in this area of research that is considered of high interest.This project addresses the following fundamental question: what are the underlying geometric structures relating p-adic Galois representations to the mod p representation theory of p-adic groups? The project builds on several recent developments in which the various PIs have played key roles, including the construction of moduli stacks parametrizing p-adic representations of the Galois groups of p-adic local fields and of local models for these stacks, and recent extensions of the Taylor-Wiles patching method which relate it to the study of coherent sheaves on the local models, and to derived algebraic geometry. Some specific questions that the PIs will study are the problem of potentially crystalline lifts, the construction of a general p-adic local Langlands correspondence, and the possible local nature of the (a priori global) patching constuction. More generally, the PIs intend to introduce algebro-geometric, categorical, and derived perspectives into the p-adic Langlands program, with the intention of gaining new insights into and making new progress on some of the key open problems in the field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是研究与整数性质有关的现象的数学分支。一个典型的数论问题是确定某个感兴趣的方程的整数解或有理数解的个数。(例如,一个直角三角形的三条边的长度是由勾股定理联系起来的。虽然很容易找到所有边长为有理数的直角三角形,但令人惊讶的是,确定哪些整数是有理数边的直角三角形的面积仍然是一个未解决的问题。这些问题的答案通常可以用某些称为l函数的数学函数进行编码。数学家罗伯特·朗兰兹(Robert Langlands)提出了一系列关于l函数的猜想(或数学预言),预言任何l函数都应该由另一种称为自同构形式的数学函数产生。研究自同构形式和l函数的一种方法是使用p进方法。这些方法涉及到利用关于固定素数p的可整除性来研究自同构形式和l函数。最近,p进方法开始与朗兰兹的思想统一为所谓的“p进朗兰兹纲领”。该项目旨在开发p进朗兰兹程序的新结果和方法,主要是几何性质的,并使用它们来建立朗兰兹猜想的新实例。该奖项将支持学生在这一被认为具有高度兴趣的研究领域的培训。该项目解决了以下基本问题:p进伽罗瓦表示与p进群的模p表示理论之间的潜在几何结构是什么?该项目建立在最近几个发展的基础上,其中各种pi发挥了关键作用,包括模堆栈的构建,参数化p进局部域的伽罗瓦群的p进表示和这些堆栈的局部模型,以及Taylor-Wiles补丁方法的最近扩展,该方法将其与局部模型上的相干轴的研究联系起来,并导出代数几何。pi将研究的一些具体问题是潜在的结晶升降机问题,一般p进局部朗兰兹对应的构造,以及(先验的全局)修补构造的可能的局部性质。更一般地说,pi打算将代数几何、分类和衍生的观点引入p进朗兰兹程序,目的是在该领域的一些关键开放问题上获得新的见解和取得新的进展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Harris其他文献

Delivering the Value of Planning
实现规划的价值
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Adams;Michael O'Sullivan;A. Inch;Malcolm Tait;Craig Watkins;Michael Harris
  • 通讯作者:
    Michael Harris
Why are medical students so motivated to learn ultrasound skills? A qualitative study
为什么医学生如此积极地学习超声技能?
  • DOI:
    10.1186/s12909-024-05420-3
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    A. Pless;Roman Hari;Michael Harris
  • 通讯作者:
    Michael Harris
Summer books
夏季书籍
  • DOI:
    10.1038/523528a
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Nathaniel Comfort;K. Padian;Michael Harris;Jane Maienschein;T. Tansey;Xu Xing;Jennifer Rampling;Jon Butterworth;Daniel Cressey;Kelly Krause;Richard Van Noorden;Monica Contestabile;Emily Banham;Anna Armstrong;B. Kiser;Sara Abdulla
  • 通讯作者:
    Sara Abdulla
Crowd-sourced data and its applications for new algorithms in photographic imaging
  • DOI:
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Harris
  • 通讯作者:
    Michael Harris
Drawing on biology to inspire molecular design: a redox-responsive MRI probe based on Gd(iii)-nicotinamide.
借鉴生物学启发分子设计:基于 Gd(iii)-烟酰胺的氧化还原响应 MRI 探针。
  • DOI:
    10.1039/c8cc07092j
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Michael Harris;Jacek L Kolanowski;Edward S. O’Neill;C. Hénoumont;S. Laurent;T. Parac‐Vogt;Elizabeth J. New
  • 通讯作者:
    Elizabeth J. New

Michael Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Harris', 18)}}的其他基金

Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
  • 批准号:
    2302208
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
L-Functions and Geometric Methods in Langlands Duality
朗兰兹对偶中的 L 函数和几何方法
  • 批准号:
    2001369
  • 财政年份:
    2020
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
LSAMP BD: Tennessee State University TLSAMP
LSAMP BD:田纳西州立大学 TLSAMP
  • 批准号:
    1810991
  • 财政年份:
    2018
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
Tennessee Louis Stokes Alliance for Minority Participation
田纳西州路易斯斯托克斯少数族裔参与联盟
  • 批准号:
    1826954
  • 财政年份:
    2018
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
Langlands Correspondences and Motivic L-Functions
朗兰兹对应和动机 L 函数
  • 批准号:
    1701651
  • 财政年份:
    2017
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
Automorphic Galois Representations and Automorphic L-functions
自同构伽罗瓦表示和自同构 L 函数
  • 批准号:
    1404769
  • 财政年份:
    2014
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
NUE: Improvement of Nanoscale Device Education via Theory, Experimental Design, and Characterization
NUE:通过理论、实验设计和表征改进纳米器件教育
  • 批准号:
    1242171
  • 财政年份:
    2013
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
Analysis of RNA-metal ion interactions by solution Raman spectroscopy
通过溶液拉曼光谱分析 RNA-金属离子相互作用
  • 批准号:
    1121373
  • 财政年份:
    2011
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
Enzymatic Activation of Water
水的酶活化
  • 批准号:
    0717850
  • 财政年份:
    2007
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Acquisition of a Dual, Complementary Ground Penetrating Radar System for Geoscience Research and Teaching in South Carolina
合作研究:采购双互补探地雷达系统,用于南卡罗来纳州的地球科学研究和教学
  • 批准号:
    0323338
  • 财政年份:
    2004
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 22.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了