Surface Coating for High-Capacity Electrodes in Li-ion Batteries: in-situ TEM Characterization and First-Principles Modeling

锂离子电池高容量电极的表面涂层:原位 TEM 表征和第一原理建模

基本信息

  • 批准号:
    1603866
  • 负责人:
  • 金额:
    $ 25.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Rechargeable lithium ion batteries help to enable sustainable energy systems by storing electricity generated by intermittent renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, lithium ion batteries designed for high energy storage capacity suffer from rapid power capacity loss over repeated charge and discharge cycles. This project seeks to elucidate of the underlying mechanisms of capacity loss through microscopic investigation of the changes in battery electrode structure during charging and recharging using transmission electron microscopy (TEM), which enables visualization at the nanometer scale. The microscopic study will be complimented by mathematical modeling studies that seek to predict the observed behavior. The educational activities associated with this project focus on hands-on outreach activities for middle school students on battery technology, coordinated through the Women in Engineering program at Purdue University. The overall goal of this research is to investigate how metal oxide coatings on high-capacity, lithium ion battery electrodes affect charge capacity fade through in-situ transmission electron microcopy (TEM) experiments and first-principles modeling. Surface coatings can potentially mitigate the degradation of electrodes through regulation of the electrochemical process of lithiation and the remediation of deformation dynamics. However, the electro-chemo-mechanical behavior of the coating materials is poorly understood. To develop a fundamental understanding of these processes, the research plan has two major objectives. The first objective is to synthesize core-shell structures of metal oxide-coated nanowires to directly observe the lithiation reaction and the morphological evolution and phase transitions associated with it using real-time, in situ TEM. The second objective is to perform first-principles atomistic modeling to develop a complimentary fundamental understanding of the effects of lithium ion insertion and extraction on electronic structure, crystal lattice structure, and structural stability. Through these objectives, the proposed research will determine the thermodynamics of diffusive reactions and phase transitions, the kinetics of structural evolution, ionic transport, and interfacial reactions, as well as the mechanical properties of the lithiated phases in the coating materials. The knowledge gained from this work will facilitate the selection of coating materials for high-capacity lithium ion batteries, and advance fundamental understanding of the intrinsic mechanisms underlying the cyclic performance of Li-ion batteries.
可充电锂离子电池通过存储风能和太阳能等间歇性可再生资源产生的电力,或为零排放电动汽车提供动力,从而帮助实现可持续能源系统。 然而,专为高储能容量而设计的锂离子电池在重复充电和放电循环中会遭受功率容量快速损失。该项目旨在通过使用透射电子显微镜(TEM)对充电和再充电过程中电池电极结构的变化进行微观研究,以阐明容量损失的潜在机制,该显微镜可以在纳米尺度上进行可视化。微观研究将得到数学建模研究的补充,数学建模研究旨在预测观察到的行为。与该项目相关的教育活动侧重于为中学生开展电池技术方面的实践推广活动,并通过普渡大学的妇女工程项目进行协调。本研究的总体目标是通过原位透射电子显微镜(TEM)实验和第一性原理建模来研究高容量锂离子电池电极上的金属氧化物涂层如何影响充电容量衰减。 表面涂层可以通过锂化的电化学过程的调节和变形动力学的补救来潜在地减轻电极的退化。 然而,涂层材料的电化学机械行为知之甚少。为了对这些过程有一个基本的了解,研究计划有两个主要目标。第一个目标是合成金属氧化物包覆的纳米线的核-壳结构,以使用实时原位TEM直接观察锂化反应以及与之相关的形态演变和相变。第二个目标是进行第一原理原子建模,以发展对锂离子插入和提取对电子结构,晶格结构和结构稳定性的影响的补充基本理解。 通过这些目标,拟议的研究将确定扩散反应和相变的热力学,结构演变,离子传输和界面反应的动力学,以及涂层材料中锂化相的机械性能。从这项工作中获得的知识将有助于选择高容量锂离子电池的涂层材料,并推进对锂离子电池循环性能的内在机制的基本理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kejie Zhao其他文献

A Survey on Cross-Chain Data Transfer
跨链数据传输调查
Aligning satellite-based phenology in a deep learning model for improved crop yield estimates over large regions
在深度学习模型中校准基于卫星的物候数据,以提高大区域作物产量的预估水平
  • DOI:
    10.1016/j.agrformet.2025.110675
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Jiaying Zhang;Kaiyu Guan;Zhangliang Chen;James Hipple;Yizhi Huang;Bin Peng;Sibo Wang;Xiangtao Xu;Zhenong Jin;Kejie Zhao;Maxwell Jong
  • 通讯作者:
    Maxwell Jong
Computational modeling of coupled mechanical damage and electrochemistry in ternary oxide composite electrodes
三元氧化物复合电极机械损伤和电化学耦合的计算模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Jiaxiu Han;Nikhil Sharma;Kejie Zhao
  • 通讯作者:
    Kejie Zhao
Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes
  • DOI:
    https://doi.org/10.1038/s41467-022-28325-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Shaofeng Li;Guannan Qian;Xiaomei He;Xiaojing Huang;Sang-Jun Lee;Zhisen Jiang;Yang Yang;Wei-Na Wang;Dechao Meng;Chang Yu;Jun-Sik Lee;Yong S. Chu;Zi-Feng Ma;Piero Pianetta;Jieshan Qiu;Linsen Li;Kejie Zhao;Yijin Liu
  • 通讯作者:
    Yijin Liu
The Consumption-Tracking Problem of Singular Dynamic Input-Output Models
  • DOI:
    10.1016/s1474-6670(17)50046-4
  • 发表时间:
    1992-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiuxi Yan;Zhaolin Cheng;Kejie Zhao;Hongting Yin
  • 通讯作者:
    Hongting Yin

Kejie Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kejie Zhao', 18)}}的其他基金

Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325463
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Continuing Grant
Conference: Support for Future Faculty Symposium at 60th Society of Engineering Science (SES) Conference; Minneapolis, Minnesota; 8-11 October 2023
会议:支持第 60 届工程科学学会 (SES) 会议的未来教师研讨会;
  • 批准号:
    2322824
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Mechanics of Organic Mixed Ionic-Electronic Conductors (OMIECs)
有机混合离子电子导体 (OMIEC) 的力学
  • 批准号:
    2210158
  • 财政年份:
    2022
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory
职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体
  • 批准号:
    1941323
  • 财政年份:
    2020
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
  • 批准号:
    1832707
  • 财政年份:
    2018
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Bridging Mechanics and Electrochemistry: Theories and Experiments on Battery Materials
桥接力学和电化学:电池材料的理论与实验
  • 批准号:
    1726392
  • 财政年份:
    2017
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Hybrid Surface Coating Toward Corrosion-Controlled Magnesium-Based Implants
职业:针对腐蚀控制镁基植入物的混合表面涂层
  • 批准号:
    2339911
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Continuing Grant
Zero Embrittlement H2 Tank Coating Testing ( Phase 3 )
零脆化氢气储罐涂层测试(第 3 阶段)
  • 批准号:
    10106846
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Launchpad
Coating network and barrier property design strategies, for protection against hydrogen embrittlement
涂层网络和阻隔性能设计策略,以防止氢脆
  • 批准号:
    2902353
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Studentship
Coating the cell surface with adhesive polymers: a strategy to enhance cell adhesion
用粘附聚合物涂覆细胞表面:增强细胞粘附的策略
  • 批准号:
    EP/X037622/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Research Grant
Algorithms, Theory, and Applications for Fiber Coating Systems
光纤涂层系统的算法、理论和应用
  • 批准号:
    2309774
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Standard Grant
Development of variable electrical resistance carbon nanofibers using pei-conjugated polymer CNF coating technology
利用裴共轭聚合物CNF涂层技术开发可变电阻碳纳米纤维
  • 批准号:
    23H01704
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Protection Against Water-Induced Short-Circuit Failures of Electronics with Cellulosic Polymer Coating and Its Practical Applications
纤维素聚合物涂层电子器件水致短路故障防护及其实际应用
  • 批准号:
    22KJ2188
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Direct Measurement of Coating Thermal Noise at Low Temperature for Gravitational Wave Telescope
引力波望远镜低温涂层热噪声的直接测量
  • 批准号:
    23KF0121
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
An Antimicrobial Coating and a Cost-Effective Manufacturing Process to Apply it to Orthopaedic Implants, Reducing Surgical Site Infections by >50%
An%20抗菌%20涂层%20和%20a%20成本效益%20制造%20流程%20to%20应用%20it%20to%20骨科%20植入物、%20减少%20外科%20部位%20感染%20by%20>50%
  • 批准号:
    10057339
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Collaborative R&D
OneSpray - Extending the shelf life of fresh produce through novel antimicrobial coating technology
OneSpray - 通过新型抗菌涂层技术延长新鲜农产品的保质期
  • 批准号:
    10075060
  • 财政年份:
    2023
  • 资助金额:
    $ 25.47万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了