CAREER: Superelastic Organic Semiconductors (SOSs): A New Class of Molecular Crystals of Responsive Shape Memory

职业:超弹性有机半导体(SOS):一类新型响应形状记忆分子晶体

基本信息

  • 批准号:
    1941323
  • 负责人:
  • 金额:
    $ 51.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will promote fundamental understanding of the responsive shape memory effect in a new class of superelastic organic semiconductors (SOSs). The shape memory effect can be illustrated by the ability of a material to remember and recover a programmed shape via thermal and mechanical input. Superelasticity refers to the ability of a material to recover a large amount of mechanical deformation at a given temperature. Superelasticity in organic crystals - through interconvertible phase changes - is a recently discovered materials phenomenon. This discovery will likely breed a new research field on polymorphic engineering of molecular crystals, providing a way of overcoming the intrinsic fragility (brittleness) of organic crystals in deformable electronics. Polymorphism is the ability of a material to exist in more than one crystal structure (ordered molecular arrangement). This award explores the fundamental relationship between those structural states and the functionalities of superelasticity, ferroelasticity, and shape memory. Electronic devices with SOSs as active layers can respond to environmental stimuli without additional circuits and find a variety of applications such as remote sensing, memory devices, and programmable electronics. SOSs are also intriguing when it comes to their mechanically and thermally tunable electrical and optical properties. With the potential to create new forms of electronic and optical devices, it is vital to understand and rationalize the mechanics of superelastic organic semiconductors. This research project will both theoretically and experimentally analyze the deformability and shape memory in organic semiconductors under mechanical and thermal load and further understand the fundamental relationship between the mechanical, thermal, and optoelectronic properties of SOSs. The research will leverage the educational and outreach activities based on new curriculum development integrating data sciences, engineering education for K-12 students through an existing collaboration with Women in Engineering Program at Purdue, and engagement of underrepresented groups in engineering sciences.The specific goal of the research is to understand the mechanics and molecular mechanism of superelasticity, ferroelasticity, and shape memory effect in a new class of organic semiconductors using multi-scale theoretical modeling and experimentation approaches. The research will (i) understand the cooperative molecular mechanism underlying the deformability and shape memory effect in the solid-state molecular crystal, (ii) understand the thermodynamics, kinetics, and stress profiles along the trajectory of the martensitic transition under the thermal and mechanical load, (iii) understand the molecular kinetics and deformation twinning/detwinning in organic crystals responsible for the superelasticity, ferroelasticity, and shape memory effect, and (iv) establish the structure-property relationship by understanding the mechanical, electronic, optical, and thermal properties of SOSs for the use in optoelectronics. Overall, the research project is to address a grand challenge in the fundamental understanding of molecular structures of macroscopic and reversible deformation in response to external stimuli. The fundamental understanding of superelasticity/ferroelasticity in organic crystals will create new knowledge about the martensitic phase transition in solid-state molecules. Such knowledge can open new avenues for rapid, reversible modulation of electronic and optical properties by means of molecular design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)补助金将促进对一类新的超弹性有机半导体(SOS)中的响应形状记忆效应的基本理解。形状记忆效应可以通过材料通过热和机械输入记忆和恢复编程形状的能力来说明。 超弹性是指材料在给定温度下恢复大量机械变形的能力。 有机晶体中的超弹性-通过相互转化相变-是最近发现的材料现象。这一发现将可能孕育出分子晶体多晶型工程的新研究领域,为克服可变形电子学中有机晶体固有的脆性(脆性)提供一种途径。 多晶型现象是材料以一种以上晶体结构(有序分子排列)存在的能力。 该奖项探讨了这些结构状态与超弹性,铁弹性和形状记忆功能之间的基本关系。 具有SOS作为有源层的电子器件可以在没有附加电路的情况下响应环境刺激,并找到各种应用,例如遥感,存储器器件和可编程电子器件。当涉及到它们的机械和热可调的电学和光学特性时,SOS也很有趣。随着创造新形式的电子和光学器件的潜力,理解和合理化超弹性有机半导体的力学至关重要。本研究将从理论和实验两方面分析有机半导体在机械和热载荷下的变形性和形状记忆性,并进一步了解SOS的机械,热和光电性能之间的基本关系。该研究将利用基于新课程开发的教育和推广活动,整合数据科学,通过与普渡大学女性工程项目的现有合作为K-12学生提供工程教育,以及工程科学中代表性不足的群体的参与。研究的具体目标是了解超弹性,铁弹性,和形状记忆效应在一类新的有机半导体使用多尺度的理论建模和实验方法。研究将(i)理解固态分子晶体中变形性和形状记忆效应的协同分子机制,(ii)理解在热和机械载荷下沿着马氏体转变轨迹的热力学,动力学和应力分布,(iii)理解有机晶体中负责超弹性,铁弹性,和形状记忆效应,和(iv)建立结构与性能的关系,通过理解的机械,电子,光学和热性能的SOS用于光电子学。总的来说,该研究项目是为了解决在响应外部刺激的宏观和可逆变形的分子结构的基本理解的巨大挑战。对有机晶体中超弹性/铁弹性的基本理解将创造关于固态分子中马氏体相变的新知识。这些知识可以通过分子设计为电子和光学性质的快速、可逆调制开辟新的途径。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unraveling Molecular Design Principle of Ferroelasticity in Organic Semiconductor Crystals with Two-Dimensional Brickwork Packing
  • DOI:
    10.1021/acs.chemmater.2c02534
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Sang Kyu Park;Hongtao Sun;M. Bernhardt;Kyoungtae Hwang;J. Anthony;K. Zhao;Ying Diao
  • 通讯作者:
    Sang Kyu Park;Hongtao Sun;M. Bernhardt;Kyoungtae Hwang;J. Anthony;K. Zhao;Ying Diao
Molecular Mechanisms of Superelasticity and Ferroelasticity in Organic Semiconductor Crystals
有机半导体晶体超弹性和铁弹性的分子机制
  • DOI:
    10.1021/acs.chemmater.1c00080
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Sun, Hong;Park, Sang Kyu;Diao, Ying;Kvam, Eric P.;Zhao, Kejie
  • 通讯作者:
    Zhao, Kejie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kejie Zhao其他文献

A Survey on Cross-Chain Data Transfer
跨链数据传输调查
Aligning satellite-based phenology in a deep learning model for improved crop yield estimates over large regions
在深度学习模型中校准基于卫星的物候数据,以提高大区域作物产量的预估水平
  • DOI:
    10.1016/j.agrformet.2025.110675
  • 发表时间:
    2025-09-15
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Jiaying Zhang;Kaiyu Guan;Zhangliang Chen;James Hipple;Yizhi Huang;Bin Peng;Sibo Wang;Xiangtao Xu;Zhenong Jin;Kejie Zhao;Maxwell Jong
  • 通讯作者:
    Maxwell Jong
Computational modeling of coupled mechanical damage and electrochemistry in ternary oxide composite electrodes
三元氧化物复合电极机械损伤和电化学耦合的计算模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Jiaxiu Han;Nikhil Sharma;Kejie Zhao
  • 通讯作者:
    Kejie Zhao
Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes
  • DOI:
    https://doi.org/10.1038/s41467-022-28325-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Shaofeng Li;Guannan Qian;Xiaomei He;Xiaojing Huang;Sang-Jun Lee;Zhisen Jiang;Yang Yang;Wei-Na Wang;Dechao Meng;Chang Yu;Jun-Sik Lee;Yong S. Chu;Zi-Feng Ma;Piero Pianetta;Jieshan Qiu;Linsen Li;Kejie Zhao;Yijin Liu
  • 通讯作者:
    Yijin Liu
The Consumption-Tracking Problem of Singular Dynamic Input-Output Models
  • DOI:
    10.1016/s1474-6670(17)50046-4
  • 发表时间:
    1992-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jiuxi Yan;Zhaolin Cheng;Kejie Zhao;Hongting Yin
  • 通讯作者:
    Hongting Yin

Kejie Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kejie Zhao', 18)}}的其他基金

Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325463
  • 财政年份:
    2024
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Continuing Grant
Conference: Support for Future Faculty Symposium at 60th Society of Engineering Science (SES) Conference; Minneapolis, Minnesota; 8-11 October 2023
会议:支持第 60 届工程科学学会 (SES) 会议的未来教师研讨会;
  • 批准号:
    2322824
  • 财政年份:
    2023
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant
Mechanics of Organic Mixed Ionic-Electronic Conductors (OMIECs)
有机混合离子电子导体 (OMIEC) 的力学
  • 批准号:
    2210158
  • 财政年份:
    2022
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemomechanical Degradation of Oxide Cathodes in Li-ion Batteries: Synchrotron Analysis, Environmental Measurements, and Data Mining
合作研究:锂离子电池中氧化物阴极的化学机械降解:同步加速器分析、环境测量和数据挖掘
  • 批准号:
    1832707
  • 财政年份:
    2018
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant
Bridging Mechanics and Electrochemistry: Theories and Experiments on Battery Materials
桥接力学和电化学:电池材料的理论与实验
  • 批准号:
    1726392
  • 财政年份:
    2017
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant
Surface Coating for High-Capacity Electrodes in Li-ion Batteries: in-situ TEM Characterization and First-Principles Modeling
锂离子电池高容量电极的表面涂层:原位 TEM 表征和第一原理建模
  • 批准号:
    1603866
  • 财政年份:
    2016
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333551
  • 财政年份:
    2024
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Continuing Grant
Collaborative Research: Compositionally and Structurally Modulated Ferroelastic Films for Unprecedented Superelastic Properties
合作研究:成分和结构调制的铁弹性薄膜,具有前所未有的超弹性特性
  • 批准号:
    2333552
  • 财政年份:
    2024
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Continuing Grant
2024 CASMART Student Design Challenge at the 2024 Shape Memory and Superelastic Technologies (SMST) Conference; Cascais, Portugal; 6-10 May 2024
2024 年形状记忆和超弹性技术 (SMST) 会议上的 2024 CASMART 学生设计挑战赛;
  • 批准号:
    2415582
  • 财政年份:
    2024
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Standard Grant
Mechanism of hydrogen-induced phase transformations in Ti-Ni superelastic alloys
Ti-Ni超弹性合金氢致相变机理
  • 批准号:
    23K13540
  • 财政年份:
    2023
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural Assessment and Repair of Superelastic-Shape-Memory-Alloy Reinforced-Concrete Framed Structures Following Exposure to Seismic and/or Fire Events
暴露于地震和/或火灾事件后超弹性形状记忆合金钢筋混凝土框架结构的结构评估和修复
  • 批准号:
    RGPIN-2020-04792
  • 财政年份:
    2022
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Discovery Grants Program - Individual
Study of room-temperature superelastic titanium alloys with large recovery strain and their phase stability
大回复应变室温超弹性钛合金及其相稳定性研究
  • 批准号:
    22H00256
  • 财政年份:
    2022
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
  • 批准号:
    RGPIN-2020-05800
  • 财政年份:
    2022
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Discovery Grants Program - Individual
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
  • 批准号:
    RGPIN-2020-05800
  • 财政年份:
    2021
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Discovery Grants Program - Individual
Structural Assessment and Repair of Superelastic-Shape-Memory-Alloy Reinforced-Concrete Framed Structures Following Exposure to Seismic and/or Fire Events
暴露于地震和/或火灾事件后超弹性形状记忆合金钢筋混凝土框架结构的结构评估和修复
  • 批准号:
    RGPIN-2020-04792
  • 财政年份:
    2021
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidation of superelastic mechanisms and property enhancement through multiscale microstructure control in Zr based alloys
通过 Zr 基合金的多尺度微观结构控制阐明超弹性机制和性能增强
  • 批准号:
    21H01647
  • 财政年份:
    2021
  • 资助金额:
    $ 51.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了