Biomimetic Materials to Elucidate the Role of Microenvironment in Glioblastoma Stem Cell Maintenance In Vitro
仿生材料阐明微环境在胶质母细胞瘤干细胞体外维持中的作用
基本信息
- 批准号:1604677
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
#1604677-KimThis project focuses on developing and characterizing hyaluronic acid-based hydrogel 3D matrices as an in vitro test bed for studying glioblastoma stem cells (GSCs or brain tumor initiating cells), which play an important role in tumor formation and tumor recurrence in glioblastoma multiforme (GBM), one of the deadliest forms of human cancer. The matrices will be used to investigate the role of microenvironmental influences, particularly the role of mechanical and chemical signals on GSC phenotype and examine its utility in measuring therapy response. The system has the potential to provide a controllable and tunable environment closely mimicking the in vivo brain. The proposed system could lead to improved therapeutic options for patients (over 22,000/year) suffering from GBM. The system developed could be broadly utilized in understanding the role of microenvironmental signals in multiple types of cancer, particularly those that metastasize to the brain as well as in fundamental studies of neural development. Educational impact is achieved through development of an "Engineering Day" for high school students, providing research opportunities for under-represented female and African-American Students, integration of research related principles into existing courses and providing summer bioengineering workshops for high school students and teachers.This project will combine biomaterials engineering strategies with current understanding of glioblastoma stem cell (GSC; also known as brain tumor initiating cell) biology to design a novel 3D culture system mimicking the native GSC microenvironment that would improve in vitro prediction of therapeutic response by allowing investigation of GSC-matrix interactions. GSCs cell models are superior to established glioblastoma multiforme (GBM) cell lines that are routinely employed in the drug development pipeline. GSCs freshly-derived from GBM patients are known to better recapitulate GBM biology. Though it is well-known that cell behavior is drastically altered when exposed to 3D microenvironments, GSCs are currently mainly cultured in artificial, 2D, and matrix-free environments (i.e., stiff tissue culture polystyrene) that do not appropriately capture the brain microenvironment. Furthermore, softer tissue-like biomaterials afford the ability to present the optimal combination of cues to provide more physiologically relevant environments, which can induce cellular phenotypes typically observed in vivo. For an improved fundamental understanding of microenvironmental influences on GSC phenotype, biomaterials mimicking the in vivo mechanical and chemical cues found in the brain microenvironment must be employed. In the planned studies, the investigators will use biomimetic hyaluronic acid (HA) hydrogels to establish the role of mechanical and chemical signals in maintenance of the GSC phenotype. Furthermore, they will utilize their culture system to quantify therapy response in vitro. Thus the main goal of the project is to create a novel enabling technology that will advance studies of GSC biology and aid future GBM drug development pipelines. GBM is among the deadliest forms of human cancer with an average survival of approximately one year. The proposed work is poised to provide a novel therapeutic evaluation system that can better predict clinical outcomes, thus could lead to improved therapeutic options affecting the lives of over 22,000 individuals per year. The system developed could be broadly utilized in understanding the role of microenvironmental signals in multiple types of cancer, particularly those that metastasize to the brain as well as in fundamental studies of neural development. Outreach activities include: 1) developing "Engineering Day" in high schools of rural Alabama's socioeconomically disadvantaged locality where the students are predominantly African-Americans, 2) providing engineering research opportunities to traditionally under-represented female and African-American students, 3) integrating various biology, materials science, and engineering principles into new and existing undergraduate and graduate level chemical engineering courses, and 4) providing annual summer bioengineering workshops for high school students and teachers.
#1604677-Kim该项目专注于开发和表征基于透明质酸的水凝胶3D基质,作为研究胶质母细胞瘤干细胞(GSC或脑肿瘤起始细胞)的体外试验床,其在多形性胶质母细胞瘤(GBM)的肿瘤形成和肿瘤复发中发挥重要作用,GBM是人类癌症的最致命形式之一。 该矩阵将用于研究微环境影响的作用,特别是机械和化学信号对GSC表型的作用,并检查其在测量治疗反应中的效用。 该系统有可能提供一个可控的和可调的环境密切模仿在体内的大脑。 所提出的系统可以为患有GBM的患者(超过22,000/年)带来更好的治疗选择。 开发的系统可以广泛用于理解微环境信号在多种类型癌症中的作用,特别是那些转移到大脑的癌症以及神经发育的基础研究。 通过为高中生设立“工程日”,为代表性不足的女性和非洲裔美国学生提供研究机会,将研究相关原则纳入现有课程,并为高中生和教师提供暑期生物工程讲习班,实现教育影响。该项目将联合收割机生物材料工程战略与目前对胶质母细胞瘤干细胞的理解相结合GSC(也称为脑肿瘤起始细胞)生物学设计一种新型的3D培养系统,模拟天然GSC微环境,通过研究GSC-基质相互作用,改善治疗反应的体外预测。GSC细胞模型上级于已建立的多形性胶质母细胞瘤(GBM)细胞系,后者通常用于药物开发管道。已知从GBM患者新鲜衍生的GSC更好地概括GBM生物学。虽然众所周知,当暴露于3D微环境时,细胞行为会发生急剧改变,但GSC目前主要在人工、2D和无基质环境(即,硬组织培养聚苯乙烯),无法适当捕获大脑微环境。 此外,较软的组织样生物材料提供了呈现最佳线索组合的能力,以提供更生理相关的环境,这可以诱导通常在体内观察到的细胞表型。 为了更好地了解微环境对GSC表型的影响,必须采用模拟脑微环境中发现的体内机械和化学线索的生物材料。在计划的研究中,研究人员将使用仿生透明质酸(HA)水凝胶来确定机械和化学信号在维持GSC表型中的作用。此外,他们将利用他们的培养系统来量化体外治疗反应。因此,该项目的主要目标是创造一种新的使能技术,以推进GSC生物学的研究,并帮助未来的GBM药物开发管道。GBM是人类癌症中最致命的形式之一,平均生存期约为一年。 这项工作有望提供一种新的治疗评估系统,可以更好地预测临床结果,从而改善治疗选择,每年影响超过22,000人的生活。 开发的系统可以广泛用于理解微环境信号在多种类型癌症中的作用,特别是那些转移到大脑的癌症以及神经发育的基础研究。 外联活动包括:1)在亚拉巴马农村的社会经济弱势地区的高中发展“工程日”,那里的学生主要是非洲裔美国人,2)为传统上代表性不足的女性和非洲裔美国人学生提供工程研究机会,3)将各种生物学、材料科学和工程原理整合到新的和现有的本科和研究生水平的化学工程课程中,4)每年为高中学生和教师提供暑期生物工程工作坊。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The impact of temozolomide and lonafarnib on the stemness marker expression of glioblastoma cells in multicellular spheroids
- DOI:10.1002/btpr.3284
- 发表时间:2022-06
- 期刊:
- 影响因子:2.9
- 作者:Pinaki S. Nakod;Raghu Vamsi Kondapaneni;Brandon Edney;Yonghyun Kim;Shreyas S. Rao
- 通讯作者:Pinaki S. Nakod;Raghu Vamsi Kondapaneni;Brandon Edney;Yonghyun Kim;Shreyas S. Rao
Targeting Hyaluronan Interactions for Glioblastoma Stem Cell Therapy
- DOI:10.1007/s12307-019-00224-2
- 发表时间:2019-04-01
- 期刊:
- 影响因子:0
- 作者:Hartheimer, Joline S.;Park, Seungjo;Kim, Yonghyun
- 通讯作者:Kim, Yonghyun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yonghyun Kim其他文献
Development of a Fusion Vegetation Index Using Full-PolSAR and Multispectral Data
使用全极化SAR 和多光谱数据开发融合植被指数
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yonghyun Kim;Jaehong Oh;Y. Kim - 通讯作者:
Y. Kim
ProvSec: Open Cybersecurity System Provenance Analysis Benchmark Dataset with Labels
ProvSec:带标签的开放网络安全系统来源分析基准数据集
- DOI:
10.1007/s44227-023-00014-9 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Madhukar Shrestha;Yonghyun Kim;Jeehyun Oh;Junghwan Rhee;Yung Ryn Choe;Fei Zuo;Myungah Park;Gang Qian - 通讯作者:
Gang Qian
Fuel Properities of Spent Coffee Bean by Torrefaction
烘焙废咖啡豆的燃料特性
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Dohgun Oh;Yonghyun Kim;Hong - 通讯作者:
Hong
A coiled-coil strategy for the directional display of multiple proteins on the surface of iron oxide nanoparticles
用于在氧化铁纳米粒子表面定向显示多种蛋白质的卷曲螺旋策略
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Brandon J. Hill;Yaolin Xu;J. Sherwood;Andrew D. Raddatz;Yonghyun Kim;Y. Bao;C. Duffy - 通讯作者:
C. Duffy
A preliminary study on estimation of energy expenditure at different locations of acceleration sensor during submaximal exercise
次极量运动时加速度传感器不同位置能量消耗估算的初步研究
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Taekyun Kim;Yonghyun Kim;H. Yoon;T. Shin - 通讯作者:
T. Shin
Yonghyun Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yonghyun Kim', 18)}}的其他基金
Bioreactor-based Manufacturing of Glioblastoma Organoids
基于生物反应器的胶质母细胞瘤类器官的制造
- 批准号:
2000053 - 财政年份:2020
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
I-Corps: Automated Multicellular Aggregate Dissociator
I-Corps:自动化多细胞聚集体解离器
- 批准号:
1661600 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
BRIGE: Effects of Varying Fluid Shear Stress on Stem Cell Sphere Aggregates
BRIGE:不同流体剪切应力对干细胞球聚集体的影响
- 批准号:
1342388 - 财政年份:2013
- 资助金额:
$ 42.5万 - 项目类别:
Standard Grant
相似国自然基金
Journal of Materials Science & Technology
- 批准号:51024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 42.5万 - 项目类别:
Studentship
Supramolecular mineralizing materials for dental tissue regeneration
用于牙组织再生的超分子矿化材料
- 批准号:
2534896 - 财政年份:2025
- 资助金额:
$ 42.5万 - 项目类别:
Studentship
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
- 批准号:
EP/Z001013/1 - 财政年份:2025
- 资助金额:
$ 42.5万 - 项目类别:
Fellowship
PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
- 批准号:
10097944 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
EU-Funded
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
SME Support
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
- 批准号:
10089539 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Collaborative R&D
Scanning Transmission Electron Microscope for Beam-Sensitive Materials
用于光束敏感材料的扫描透射电子显微镜
- 批准号:
LE240100063 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Indistinguishable Quantum Emitters in van der Waals Materials
范德华材料中难以区分的量子发射器
- 批准号:
DP240103127 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Projects
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
- 批准号:
DE240100960 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Early Career Researcher Award