Silicon Metal-Insulator-Semiconductor Photovoltaics with Atomic Layer Deposited Interfacial Layers

具有原子层沉积界面层的硅金属-绝缘体-半导体光伏

基本信息

  • 批准号:
    1605129
  • 负责人:
  • 金额:
    $ 34.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

The sun represents the most abundant potential source of sustainable energy on earth. Solar cells for producing electricity require materials that absorb the sun's energy and convert its photons to electrons, a process called photovoltaics. Lowering the cost per watt for solar photovoltaic energy conversion systems is a long-standing goal that could enable more widespread adoption of solar energy. In particular, thin-film solar cells can be made cheaper than crystalline silicon-based solar cells if the right combination of material properties for high solar energy conversion efficiency can be found. The goal of this project is to investigate new layered structures for thin-film solar photovoltaics that potentially offer both low-cost processing and high solar energy conversion efficiency. These new layered structures, based on a metal-insulator-semiconductor sandwich of electronic materials, have behavior at their respective material boundaries that may favorably change the overall electronic structure and properties of the solar cell, resulting in improved performance. The innovative aspect of this research is that advanced techniques will be used to deposit these layers on top of one another with atomic level precision so that these properties can be more carefully and insightfully studied. The educational activities associated with this project include the development of a community outreach program with a local science center and the production of videos that animate the effects of physics behind the operation of photovoltaic devices.The overall goal of this research is to identify the underlying mechanisms that induce barrier height modifications and other interfacial electronic changes by insertion of dielectric tunnel layers in the context of metal-insulator-semiconductor photovoltaics (PV). Metal-insulator-semiconductor structures will be fabricated by film deposition and interface modification techniques that allow for an unprecedented level of interfacial control. This level of control will enable investigation of the fundamental behavior of fixed charges, molecular surface functionalization, atomic layer deposition (ALD) chemistry, hydrogen treatment, and ALD bilayers in MIS structures. The specific influence of these phenomena on barrier heights and interfacial electronic figures of merit relevant for improving PV devices will be quantified. Dipoles within bilayers of dissimilar metal oxides will also be used to control barrier heights. The impact of fixed charge on electronic properties will be investigated by varying fixed charge density and insulator thickness experimentally, and comparing these experimental results with theoretical simulations. Molecular surface functionalization and hydrogen at interfaces provide additional synthetic control, and their ability to minimize interfacial electronic defects will be determined. By comparing electronic measurements, low-energy ion scattering, and photoelectron spectroscopy measurements, critical relationships between layer mixing, dipole strength, and interface trap densities will be elucidated. Thus, the research will advance fundamental understanding of the underlying physical mechanisms while improving energy conversion figures of merit in a new generation of metal-insulator-semiconductor, thin-film solar PV devices.
太阳是地球上最丰富的可持续能源的潜在来源。 用于发电的太阳能电池需要吸收太阳能并将其光子转化为电子的材料,这一过程称为光电子学。 降低太阳能光伏能量转换系统的每瓦成本是一个长期目标,可以使太阳能得到更广泛的采用。 特别是,如果能够找到实现高太阳能转换效率的材料特性组合,薄膜太阳能电池的制造成本将比晶体硅太阳能电池更低。本课题的目的是研究既能实现低成本加工,又能实现高太阳能转换效率的薄膜太阳能光电池的新型层状结构。 这些新的分层结构基于电子材料的金属-绝缘体-半导体夹层结构,在它们各自的材料边界处具有可以有利地改变太阳能电池的整体电子结构和性质的行为,从而导致改进的性能。这项研究的创新之处在于,将使用先进的技术以原子级精度将这些层存款在彼此之上,以便可以更仔细和更有见地地研究这些属性。 与该项目相关的教育活动包括与当地科学中心合作开展社区外展计划,并制作视频,以动画形式展示光伏器件运行背后的物理效应。本研究的总体目标是确定在金属-硅材料中插入介电隧道层引起势垒高度变化和其他界面电子变化的潜在机制。绝缘体-半导体光致发光(PV)。金属-绝缘体-半导体结构将通过薄膜沉积和界面改性技术制造,这些技术允许前所未有的界面控制水平。这种水平的控制将使固定电荷,分子表面功能化,原子层沉积(ALD)化学,氢处理,和ALD双层MIS结构的基本行为的调查。这些现象的势垒高度和界面电子品质因数的改善光伏器件的具体影响将被量化。 不同金属氧化物双层内的偶极子也将用于控制势垒高度。 通过改变固定电荷密度和绝缘体厚度的实验,并将这些实验结果与理论模拟进行比较,研究固定电荷对电子特性的影响。 分子表面功能化和界面处的氢提供了额外的合成控制,并且将确定它们使界面电子缺陷最小化的能力。通过比较电子测量,低能离子散射,和光电子能谱测量,层混合,偶极子强度和界面陷阱密度之间的关键关系将得到阐明。因此,该研究将推进对基本物理机制的基本理解,同时提高新一代金属-绝缘体-半导体薄膜太阳能光伏器件的能量转换品质因数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nick Strandwitz其他文献

Nick Strandwitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nick Strandwitz', 18)}}的其他基金

GOALI: Ultra-Low Wear Plasma Enhanced Atomic Layer Deposited Nitride Thin Films: Exploring Processing, Structure, Properties and Mechanisms
GOALI:超低磨损等离子体增强原子层沉积氮化物薄膜:探索加工、结构、性能和机制
  • 批准号:
    1826251
  • 财政年份:
    2019
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
CAREER: Probing Crystallization of Atomic Layers Using In Situ Electron Diffraction
职业:利用原位电子衍射探测原子层的结晶
  • 批准号:
    1752956
  • 财政年份:
    2018
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant
Semiconductor Photoanodes for Water Oxidation and Solar Fuels Generation Stabilized Using Atomic Layer Deposition
利用原子层沉积稳定水氧化和太阳能燃料发电的半导体光电阳极
  • 批准号:
    1042006
  • 财政年份:
    2010
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant

相似国自然基金

Mn-Ni-Cu系all-d-metal Heusler合金的设计制备与磁性形状记忆效 应研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Metal-Na2WO4/SiO2催化甲烷氧化偶联的密度泛函理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Metal@ZnO-WO3复合纳米纤维微结构调控及对人呼气检测研究
  • 批准号:
    61901293
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
d-metal Heusler磁相变合金NiMnTi(Co)的多相变路径弹热效应研究
  • 批准号:
    51801225
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
狭叶香蒲重金属转运蛋白HMA(Heavy Metal ATPase)类基因的分离鉴定及功能分析
  • 批准号:
    31701931
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Enhancing plasmonic mode coupling in metal insulator metal structures
EAGER:增强金属绝缘体金属结构中的等离子体模式耦合
  • 批准号:
    2334968
  • 财政年份:
    2023
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant
Study of electronic dynamics on Metal-Insulator phase boundary of lambda-BETS salts
lambda-BETS盐金属-绝缘体相界电子动力学研究
  • 批准号:
    23K04685
  • 财政年份:
    2023
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER: Plasmonic Sensing in Liquid with Metal-Insulator-Metal Nanosensors Embedded in Soft Matrices
EAGER:使用嵌入软基体中的金属-绝缘体-金属纳米传感器在液体中进行等离子体传感
  • 批准号:
    2332818
  • 财政年份:
    2023
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
Critical phenomena of metal-insulator transition in disordered impurity systems: Effects of spin and compensation
无序杂质系统中金属-绝缘体转变的关键现象:自旋和补偿的影响
  • 批准号:
    22K03449
  • 财政年份:
    2022
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Superconducting and Metal-Insulator Transitions in Quasi-Two-Dimensional Strongly Correlated Materials
准二维强关联材料中的超导和金属-绝缘体转变
  • 批准号:
    2104193
  • 财政年份:
    2021
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant
Realizing of non-volatile memory with large capacity and low power consumption by metal-insulator-semiconductor junction composed by phase change material and oxide
利用相变材料和氧化物组成的金属-绝缘体-半导体结实现大容量、低功耗的非易失性存储器
  • 批准号:
    21K20509
  • 财政年份:
    2021
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Electrical and Thermoelectric Transport Beyond the Metal/Insulator Paradigm
职业:超越金属/绝缘体范式的电和热电传输
  • 批准号:
    2045742
  • 财政年份:
    2021
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Continuing Grant
Smart regulation of thermal infrared radiation with meta-structured metal-insulator transition
通过元结构金属-绝缘体转变智能调节热红外辐射
  • 批准号:
    1953803
  • 财政年份:
    2020
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Standard Grant
Investigation of metal-insulator transition and negative thermal expansion in layers ruthenates.
层状钌酸盐中金属-绝缘体转变和负热膨胀的研究。
  • 批准号:
    19F19057
  • 财政年份:
    2019
  • 资助金额:
    $ 34.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了